top of page

搜尋結果

56 items found for ""

  • 9 Steps Of Die Casting Die(HPDC Mold) Design III | cameldie.com

    Steps Of Die Casting Die(HPDC Mold) Design III Die casting mold design, We often said as design of die casting dies or die casting die design. Also, Which be called die casting mould design in some countries. The basic die casting die design steps are summarized as follows: 1. Understand and determine the task 2. Design preparation 3. Select the parting surface and die casting system 4. Choose the die casting equipment 5. Determine the appropriate mold structure and draw the mold assembly sketch * 6. Calculation and verification of relevant parameters * 7. Draw the die casting mold pattern * 8. Proofreading and review * 9. Organize and archive design materials At last, The steps 7-9 of die casting mold design on this page. STEPS OF DIE CASTING DIE(HPDC MOLD) DESIGN III 7. Draw the die casting mold pattern * 7 Draw according to the national drawing standards, sometimes combined with factory custom drawing methods that are not specified by the national standards 1) Draw a die-casting drawing Before drawing the mold assembly drawing, the die-casting drawing should be drawn, and it should meet the requirements of the part drawing and process data. The size guaranteed by the next process should be marked with the words "process size" on the drawing. If after die-casting, except for repairing the burrs, no other machining is performed, then the process drawing is exactly the same as the part drawing. It is best to mark the part number, name, material, material shrinkage rate, drawing ratio, etc. under the die-casting drawing. Die casting drawing and material shrinkage are usually drawn on the mold assembly drawing. 2) Draw the mold assembly structure diagram The die-casting mold assembly drawing reflects the assembly relationship between the parts, the shape and size of the main parts and the working principle of die-casting. When drawing the mold assembly drawing, try to use a 1:1 ratio, first start drawing from the cavity, and draw the main view and other views at the same time. Code all the part numbers in order, and fill in the detailed list, marking the technical requirements and instructions for use. The mold assembly drawing should include the following: the structure of the pouring system and the overflow system, the position of the parting surface and the method of parting and taking parts, the shape of the mold and the positioning of all connecting parts, the position of the guide, the overall size of the mold, auxiliary tools ( Picking and unloading tools, calibration tools, etc.), related technical instructions, etc. 3) Draw a part drawing In addition to standard parts, all mold parts that need to be self-made should be separately drawn to meet the requirements of mechanical drawing specifications to meet the requirements of delivery processing; the drawing number of the part drawing should be consistent with the part drawing number in the assembly drawing so that it is easy to check the reason The sequence of disassembling and drawing parts of the mold assembly drawing should be: first inside and then outside, first complicated and then simple, first dismantling and drawing forming parts, and then dismantling and drawing structural parts. Graphics requirements: draw according to scale, allowing zoom in or zoom out. The view selection is reasonable, the projection is correct, and the layout is appropriate. In order to make the processing personnel easy to understand and easy to assemble, the graphics should be as consistent as possible with the assembly drawing, and the graphics should be clear. The dimensioning requirements are unified, centralized, orderly, and complete. The order of dimensioning is: first mark the main part dimensions and draft angle, then mark the matching dimensions, and then mark all the dimensions. Mark the mating dimensions first on the non-main parts drawings, and then mark all the dimensions. Other content, such as part name, mold drawing number, material designation, heat treatment, and hardness requirements, surface treatment, graphic ratio, processing accuracy of free size, technical description, etc. must be filled in correctly. 8. Proofreading and review * 8 Check the view positions of all parts drawings and assembly drawings, whether the projection is correct, and whether the drawing method meets the national standards of drawing. Whether the placement of each mold part on the assembly drawing is appropriate and whether it is clearly indicated; whether the part number, name, and production quantity on the part drawing are omitted, whether it is a standard part or a non-standard part; the material, heat treatment, surface treatment, and surface of the mold part Whether the degree of finishing is marked and clearly described; the working size and matching size figures should be correct and no missing size. Check the processing performance (whether the geometric structure of all parts, drawing methods, dimensions, etc. are conducive to processing); whether the position of the parting surface and the precision of finishing meet the needs, and whether there will be flashing. After opening the mold, can it be ensured that the die-casting parts remain on the side of the mold with the ejector device, whether the demolding method is correct, whether the size, position, and quantity of the push rod (push tube) are appropriate, and whether the push plate will be stuck by the core, Will it scratch the die casting parts. Whether the location, size, and quantity of the flow line of the cooling medium are appropriate; whether the location and size of the pouring system and the overflow system are appropriate. When the die casting part has an undercut, whether the mechanism for removing the undercut is appropriate, such as whether the slider and push rod in the inclined pin core pulling mechanism interfere with each other. 9. Organize and archive design materials 9 From the beginning to the success of mold design processing and inspection, the technical data generated during this period, such as the task book, the part drawing, the technical manual, the mold assembly drawing, the mold part drawing, the base drawing, the mold design manual, and the inspection record sheet, Trial and repair records, etc., are sorted, bound, numbered and archived according to regulations. Link to: STEPS OF DIE CASTING DIE(HPDC MOLD) DESIGN I Link to: STEPS OF DIE CASTING DIE(HPDC MOLD) DESGIN II contact

  • High Pressure Aluminum Alloy Die Casting Mold | cameldie.com

    ALUMINUM ALLOY DIE CASTING MOLDS Aluminum alloy die castings can be used in a wide range of industries. Like: Motors, water pumps, electrical appliances, lamps, automobile and motorcycle accessories, electronics, home appliances, and some communication industries, machinery industries, etc. Some high-performance, high-precision, high-quality aluminum alloy products with high toughness are also used in large aircraft, ships, etc. In relatively demanding industries. They mainly used still in the parts of some equipment. Commonly used aluminum die casting alloys metals grades: ADC12,A380/ADC10,A360 etc. CAMEL used Die casting machines for mold trials ranging from 280 tons to 3000 tons.( 280T, 350T, 500T, 800T, 1250T,1650T, 3000T), Our capability from tooling design to build dies about 12-15 sets of big die casting dies per month. As of 2020 business data, There are over 60% of die tool projects for aluminum alloy die casting molds in CAMEL. BLOG Die casting companies What is die casting What is die casting mold HPDC VS LPDC die casting What is Aluminum die casting mold High-pressure Zinc alloy die casting molds What is high-pressure Magnesium die casting mold Steps of die casting mold(HPDC mold)design Failure mode and analysis of die-casting dies How to extend the life of die casting tool contact

  • DIE CASTING MOLD CASES | cameldie.com

    DIE CASTING MOLD CASES AUTOMOTIVE INDUSTRIAL Product Material: AL380 Product Size (LxWxH): 173.68x175.17x54.32mm Product Size (LxWxH): 173.67x175.74x55.62mm Product Industry: Auto industry ( used for Top cover of auto air conditioning compressor) SALES HOTLINE: CHINA TEL: +86 (0)755 8344 0917 The U.S. TEL: +1 615 968 3002 READ MORE→ AEROSPACE INDUSTRY Product Material: AZ91D Product Size (LxWxH): 91x91x7mm Qty Of Cavity: 4 Qty Of Slider: 0 Mold Type: 2-Plate mold Machine Tons: 600Ton Mold Size (mm): 750 x 620 x 533 Lead Time: 28 days READ MORE→

  • Technical Specifications Of Die Casting Dies | cameldie.com

    Technical specifications of die casting dies After the design of the Die-casting dies structure is completed, there are more important and more complex manufacturing, assembly, mold trial, and production application processes. To smoothly process the dies manufacturing, trial mold, and normal use, the technical requirements for manufacturing, assembling, use, and other processes must be indicated on the assembly drawing and part drawing of the Die-casting dies. 1. Technical requirements that should be indicated in the Die-casting dies assembly drawing 2. Technical requirements for the shape and installation position of the Die-casting dies 3. Technical requirements for overall assembly accuracy of Die-casting dies 4. Dimensional tolerance and fit of structural parts of Die-casting dies 5. Geometric tolerances and surface roughness requirements of Die-casting dies structural parts 1. Technical requirements that should be indicated in the Die-casting dies assembly drawing 1 The assembly drawing should indicate the following technical requirements (1) The maximum external dimensions of the dies(length×width×height). To facilitate the review of whether there is interference between the sliding components and the machine components when the dies are working, the size, position, and stroke of the hydraulic core-pulling cylinder, the size and position of the slider core-pulling mechanism, and the position of the slider to the endpoint sketches should be drawn. (2) Choose the Die-casting machine model. To facilitate the review of whether there is interference between the sliding components and the machine components when the dies is working, the size, position, and stroke of the hydraulic core-pulling cylinder, the size and position of the slider core-pulling mechanism and the position of the slider to the end point sketches should be drawn. (3) Choose the inner diameter, specific pressure, or nozzle diameter of the pressure chamber. (4) The minimum mold opening stroke (if the maximum mold opening stroke is limited, it should also be noted). (5) Push out the itinerary. (6) Indicate the cooling system, hydraulic system inlet, and outlet. (7) Pouring system and main dimensions. (8) Action stroke of special motion mechanism. 2. Technical requirements for the shape and installation position of the Die-casting dies 2 The shape and installation position of the Die-casting dies should meet the following technical requirements: (1) The edges of each template should be chamfered 2×45°, and the mounting surface should be smooth and flat, and there should be no protruding screw heads, pins, burrs, and scratches. (2) Mark obvious marks on the non-working surface of the dies, including the following: product code, dies number, manufacturing date, and dies manufacturer's name or code. (3) The movable and fixed molds are respectively provided with screw holes for lifting, and the larger parts (>25kg) should also be provided with lifting screw holes. The effective thread depth of the screw hole is not less than 1.5 times the diameter of the screw hole. (4) The relevant dimensions of the dies installation part should be by the relevant corresponding dimensions of the selected die-casting machine, and the installation and disassembly are convenient. The installation hole diameter and depth of the pressure chamber must be strictly inspected. (5) Except for the guide sleeve hole and the oblique pinhole on the parting surface, all process holes and screw holes in the dies manufacturing process should be blocked and flush with the parting surface. 3. Technical requirements for overall assembly accuracy of Die-casting dies 3 The overall assembly accuracy of the die-casting dies should be guaranteed to meet the following technical requirements (1) The parallelism between the dies parting surface and the installation plane of the movable and fixed dies seat plates is selected according to the provisions of the table below: The specified unit of parallelism between the dies parting surface and the installation plane of the movable and fixed dies base (unit: mm) The maximum linear length of the measured surface ≤160 160~250 250~400 400~630 630~1000 1000~1600 Tolerance value 0.06 0.08 0.1 0.12 0.16 0.2 (2) The verticality of the installation plane of the guidepost, guide sleeve, and fixed mold seat plate should be selected according to the provisions of the table below: The vertical regulation of guide post and guide sleeve to the installation plane of fixed and movable dies seat plate (unit: mm) Effective sliding length of guide post and guide sleeve ≤40 40~63 63~100 100~160 160~250 Tolerance value 0.015 0.02 0.025 0.030 0.040 (3) On the parting surface, the plane of the fixed dies and the movable dies insert should be flush with the fixed mold set plate and the movable dies set plate or slightly higher, but the height should be within the range of 0.05~0.10mm. (4) The push rod and the reset rod should be flush with the parting surface respectively. The pushrod is allowed to protrude from the profile surface, but not more than 0.1mm, and the reset rod is allowed to be lower than the profile surface, but not more than 0.05mm. The pushrod should be able to rotate flexibly in the pushrod fixed rod, but the axial clearance should not be greater than 0.10mm. (5) All movable parts of the dies should be accurate in position, reliable in movement, and free of skew and sluggishness; no movement between relatively fixed parts is allowed. (6) The sliding block is positioned accurately and reliably after the dies are opened. At the end of the core pulling action, the distance between the drawn core end face and the end face of the corresponding shape or hole on the casting shall not be less than 2mm. The sliding mechanism should be flexible in guiding and sliding, stable in movement, and proper clearance. After closing the dies, the sliding block and the wedge block should be compressed, the contact area is not less than 1/2, and has a certain prestress. (7) The surface roughness Ra of the runner should not be greater than 0.4m, the connecting part should be smoothly connected, the inserting part should be close, and the molding inclination should not be less than 5°. (8) When clamping the dies, the molding surface should fit closely. If there is a gap in some parts, the gap size should not be greater than 0.05mm (except for the exhaust groove). (9) The cooling water channel and temperature control oil channel should be unblocked, there should be no leakage, and the inlet and outlet should be clearly marked. (10) The surface roughness Ra of all forming surfaces is not greater than 0.4m, and all surfaces are not allowed to be damaged or rubbed. Injuries or micro cracks. 4. Dimensional tolerance and fit of structural parts of Die-casting dies 4 Die-casting dies work at high temperatures. Therefore, when selecting the matching tolerances of die-casting dies parts, not only a certain assembly accuracy is required at room temperature, but also the structural dimensions of each part are required to be stable and reliable in operation at working temperature. Especially the parts that are in direct contact with the molten metal are subjected to high pressure, high speed, and thermal alternating stress during the filling process, and the clearance with other parts is prone to change, which affects the normal progress of die casting. The change of the fit-gap is not only related to the temperature but also related to the material, shape, volume, heating degree of the working part of the parts of the dies, and the actual fit properties after processing and assembly. Therefore, the working conditions of die-casting dies parts are very complicated. Generally, the fit clearance should meet the following two requirements: ① For the fixed parts after assembly, there will be no position deviation under the impact of the molten metal. After being heated and expanded, the deformation cannot make the fit too tight, so that the dies inserts and the sleeve plate are locally overloaded seriously, causing the dies to crack. ② For parts that are active during work, after being heated, the nature of the clearance fit should be maintained to ensure normal movement, and during the filling process, the molten metal will not cause the fit clearance. Combined with the actual situation of die-casting dies manufacturing and use, the tolerance and matching accuracy of the main parts of the die-casting dies are now recommended as follows: (1) Tolerance of forming dimensions: The general tolerance level is specified as IT9, H for holes, h for shafts, and GB/T180F for length. Individual special sizes can be selected IT6~T8 level when necessary. (2) Tolerance and fit of matching parts for forming parts: ① The fixed parts of the larger parts that are in contact with the molten metal and are heated, mainly include the sleeve plate and the insert block, the insert block and the core, the sleeve plate and the sprue sleeve, the insert block and the shunt cone, etc. The integral type and accuracy are H7/h6 or H8/h7. The inlaid hole is H8, the largest one in the shaft is h7, and the rest of the spare parts in the shaft is js7, and the cumulative tolerance of the assembly is h7. ②The matching type and accuracy of the movable parts (including push rods, push tubes, formed push plates, sliders, slider grooves, etc.), the hole is H7, the axis is e7 Or d8. ③The height tolerance of inserts, inserts, and fixed cores is F8. ④The tolerance of the base size is taken as js8. (3) Tolerance and coordination of template size: the tolerance of the base size is taken as js8; the core is cylindrical or symmetrical, and the centerline size tolerance of the hole from the base to the fixed core on the template is taken as js8; the core is non-cylindrical Or when it is asymmetrical, the edge dimension tolerance from the base surface to the fixed core on the template is taken as js8; the thickness dimension tolerance of the combined sleeve plate is taken as h10; the depth dimension tolerance of the insert hole of the integral sleeve plate is taken as h10. (4) Dimension tolerance of sliding groove: ①The dimensional tolerance of the sliding block groove to the base surface is taken as f7. ②For the combined sleeve, the dimensional tolerance from the slider groove to the bottom surface of the sleeve is taken as js8. ③For the integral sleeve plate, the dimensional tolerance from the slider groove to the bottom surface of the insert hole is taken as js8. (5) Tolerance and fit of guide post and guide sleeve: For the fixed position of the guide post and guide sleeve, the hole is H7, and the axis is m6, r6, or k6; for the clearance fit of the guide post and guide sleeve, the hole is H7, and the axis is k6 or printed. ; If the hole is H8, the axis is e7. (6) The size between the guide post and guide sleeve and the base surface: the dimensional tolerance from the base surface to the center line of the guide post and guide sleeve is js7; the dimensional tolerance of the distance between the center line of the guide post and guide sleeve is js7, or cooperated processing. (7) The tolerance and fit between the push plate guide post and the push rod fixed plate and the push plate: the hole is H8, and the shaft is f8 or f9. (8) Tolerance of core table, push rod table, and corresponding dimensions: the depth of the hole table is +0.05~+0.10mm, and the height of the pillow block is -0.03~0.05mm. (9) The tolerance level of the unmarked tolerance dimensions of various parts is IT14 level, H for holes, h for shafts, and length (height) and distance dimensions are selected according to js14 accuracy. 5.Geometric tolerances and surface roughness requirements of Die-casting dies structural parts 5 Geometric tolerance is the deviation of the surface shape and position of the part. The deviation range of the geometric tolerance of the forming part of the formed part and the reference part of all other structural parts is generally required to be within the tolerance range of the size, and no additional mark is added on the drawing. The geometric tolerances of other surfaces of the parts of the Die-casting dies are selected according to the table below and marked on the drawing. The table below Selection accuracy grades of geometric tolerances of die casting dies parts: Geometric tolerances of relevant elements Selection accuracy Coaxial between the axis of the fixed part of the guide post and the axis of the guide sliding part Level 5~6 The coaxial of each forming step surface of the circular insert to the mounting surface Level 6 Concentricity between the inner diameter of the guide sleeve and the outer diameter axis Level 6~7 The axis of the fixed hole of the insert in the sleeve is coaxial with the common axis of the holes Level 7~8 on the other sleeves The perpendicularity between the axis of the guide post or the guide sleeve Level 5~6 mounting hole and the parting surface of the sleeve plate The two adjacent sides of the set of plates are the perpendicularity of the process reference plane Level 5~6 The perpendicularity of the two adjacent sides of the insert and the other side of the parting face Level 6~7 The perpendicularity between the surface of the insert hole in the sleeve and the parting surface Level 7~8 The perpendicularity of the axis of the core fixing hole on the insert to the parting surface Level 7~8 Parallelism of the two planes of the plate Level 5 The parallelism of the opposite sides of the insert and the bottom of the parting face Level 5 The axis of the insert hole in the sleeve and the end face of the parting surface are circularly run out Level 6~7 The radial runout of the axis of the circular insert to its end face Level 6~7 Parallelism of the parting surface of the insert, the sealing surface of the slider, the combined surface ≤0.05mm of the combined block, etc. The surface roughness of die-casting dies parts not only affects the surface quality of the die-casting part, but also affects the use, wear, and life of the dies. It should be selected according to the work needs of the part. The appropriate surface roughness is shown in the table below. Surface roughness of Die-casting dies: Surface position Surface roughness Ra/pm The forming surface of inserts, cores and other forming parts and the surface of the gating system 0.1~0.2 The mating surface of inserts, cores, sprue sleeves, shunt cones, and other parts ≤0.4 The mating surfaces of guide posts, guide sleeves, push rods, diagonal pins and other parts ≤0.8 Mold parting surface, joint surface between each template ≤0.8 Support surface of core, push rod, sprue bushing, shunt cone and other parts ≤1.6 Other non-working surfaces ≤6.3 contact

  • Magnesium Die Casting Mold Design | cameldie.com

    MAGNESIUM DIE CASTING MOLD DESIGN PRODUCT PARAMETERS Product Material: AZ91D Product Size (LxWxH): 134x52x43mm Qty Of Cavity: 1Qty Of Slider: 1 Mold Type: 2-Plate mold Machine Tons: 300Ton Mold Size (mm): 450x350x470 Lead Time: 28 days

  • TRIM DIE | cameldie.com

    TRIM DIE Using trim tools to labor cost. We focus on building quality die casting dies and trim tools to help the customer save costs for many years. To lower the labor cost and speed up processing in the example below, CAMEL preferred to build five sliders to remove the burr for these 2.0mm small holes (total 10pcs). BLOG contact Die casting companies What is die casting What is die casting mold HPDC VS LPDC die casting What is Aluminum die casting mold High-pressure Zinc alloy die casting molds What is high-pressure Magnesium die casting mold Steps of die casting mold(HPDC mold)design Failure mode and analysis of die-casting dies How to extend the life of die casting tool

  • Custom Die Casting In China | cameldie.com

    Custom Die Casting In China Customized Die Casting Die Casting using a mold or a reusable competitive cost mass production manufacturing process is complicated metal parts. This process is highly automated devices; it involves four key elements: metal raw material, the furnace, the mold, and die casting machines. Metal die casting processes are generally used in aluminum, magnesium, brass, copper, zinc, or several metal alloys. However, the composition of the alloy used may vary, depending on the specifications and product requirements of individual customers. In the production process, The metal melts in a hot chamber or a cold chamber. Cold chamber furnaces refractory metal such as aluminum, and the hot chamber furnaces low-melting metal such as zinc or a metal alloy. Once the metal in a liquid state, the die casting machines will be forced into a mold, and then rapidly cooled and solidified into the desired shape. The die casting process is almost automated, so labor costs are low. However, the high-costed complexity of using the steel die and the die casting tools require mass production in order to a relatively low cost per unit. Free Quote & Part Analysis → Die Casting Metals And Alloys The die casting process usually uses aluminum alloys, magnesium alloys, and zinc alloys. The choice of a particular alloy depends on the physical properties and design features required for the final casting. Quality such as density, corrosion resistance, melting point, and strength may be decisive factors along with cost factors. Aluminum Magnesium Zamak alloy Cooper Each metal used has specific properties, in certain cases, it may prove advantageous. For example, aluminum alloys generally have the advantages of lightweight and corrosion resistance. In contrast, the copper alloy generally higher cost but has excellent electrical conductivity. The required part design features may also greatly influence the choice of materials used for die-casting parts. Certain metal alloys (e.g. Zn) exhibit a high degree of ductility for parts having better surface finish and a thin, these alloys could be a good choice. Zamak is an acronym of the German names for the metals of which the alloys are composed: Zink (Zinc ), Aluminum , Magnesium and Kupfer (Copper ). The most common zamak alloy is zamak 3. Besides that, zamak 2, zamak 5 and zamak 7 are also commercially used. These alloys are most commonly die casting. -Copyright Wikipedia The choice of material also affects the processing possibilities. Aluminum alloys with much higher melting points require cold-chamber die casting machines, While zinc and other alloys melt at low temperatures using hot-chamber die casting machines. contact

  • Aluminum Die Casting Tool | cameldie.com

    ALUMINUM DIE CASTING TOOL PRODUCT PARAMETERS Product Material: AL380 Product Size (LxWxH): 214x162x63mm ​ Qty Of Cavity : 1 Qty Of Slider : 0 Mold Type : 2-Plate mold Machine Tons : 600Ton Mold Size (mm) : 700x700x670 Lead Time : 32 days

  • Die Casting Mold Manufacturer | Mold Making

    12 Years Of Die Casting Mold Export Experience. One-Stop Manufacturer: Development, Machining, Assembly, and Trial Mold In-House. 24/7 Hours Online Service, 9 After-service Sites In Europe & U.S. ISO 9001:2015 and IATF 16949:2016 Certified Company ABOUT US SHENZHEN CAMEL DIE LIMITED provides high-quality die casting mold design, stable mold development, and mold production export from China to North America & Europe. One of the worldwide leading mold manufacturers specializing in high pressure die casting (HPDC) mold build in-house. Currently, our factory has 15 sets of CNC machines and the primary material covers aluminum alloy, zinc alloy, and magnesium alloy. In addition, one-stop manufacturing service for all industrial applications, such as automotive, telecom equipment, electrical appliances, mechanical, motorcycle accessories, lighting, home appliances, medical instruments, aerospace, and machinery industries, etc. We are an ISO 9001:2015 and IATF 16949:2016 Certified Company. Free Quote & Part Analysis → MOLD PRODUCTS CAMEL used die casting machines for mold trial ranging from 280 tons to 3000 tons( 280T, 350T, 500T, 800T, 1250T,1650T, 3000T), Our capability from tooling design to build dies about 12-15 sets of big die casting dies per month. Our core business includes aluminum alloy die casting mold, magnesium alloy die casting dies, zinc alloy die casting tool, and trim die for Automotive, Telecom equipment, Mechanical, Electrical, Lighting, Furniture, Medical instruments,etc. ​ Aluminum Die Casting Mold Aluminum Die Casting Tool Magnesium Die Casting Mold Trim Die Aluminum Alloy Die Casting Molds Zinc Die Casting Mold Aluminum HPDC Mold HPDC Aluminum Alloy Mold Zinc Die Casting Part Zinc Die Casting Part Magnesium Die Casting Part Aluminum Die Casting Part Aluminum Die Casting Part Aluminum Die Casting Part Aluminum Die Casting Part Aluminum Die Casting Part Free Quote & Part Analysis → ​OUR ADVANTAGE We offer you fast, affordable, reliable service while also providing your company with first-rate quality products. We understand that our customers need both quality and service to manufacture their top-quality products. With this understood, we will exceed our customers' expectations at a fantastic price. If you have any problems with die casting mold, feel free and contact us, 24-7 hours online! Submit Thank you! We will contact you sooner. Communication: 24 Hours Online Service ( China/USA teams) Customer Service Team Works From Shenzhen, China, and Nashville, TN Professional Service: Working In The Mold Industry For More Than 12 Years Management: With Rich Experience From Designing, Processing, Mold trials, and Shipment Mature Project Management System Reduce Cost Short Lead time: On-Time Delivery Rate At 97.14% Efficient Trim Die Reduce Waste Materials Longer Lifespan: The Mold Life Of Aluminum Die Casting Molds Can Reach 200,000 Shots The Success Rate Of The First Test Can Be Up To 96% Effective: Quotes And DFM Will Be Provided Within 24 Hours The Mold 3D Drawings Are Provided Within 3 Days After Confirmation Of DFM Honor: Had Passed The ISO 9001:2015 and IATF 16949:2016 submit ​OUR FACTORY Our first factory, located in Dongguan city with 5,400 square meters supplies a capacity of around 300 sets per year. And the second factory, estimated in 2019 located in Huizhou city with 6,100 square meters to build about 240 sets of large molds per year. Essential equipment for die casting mold manufacture including CNC, EDM, WEDM, Fixtures, CMM, OMM, Die Spotting Machine, Oil Temperature Machine, and Mold Trial Machine. Workshop Of Die Casting Mold Factory CNC Machines Workshop CNC Machine 3# CNC Machine 5# Machine Operation Process Sling Area Manual Forklift Area & Trolley Area Metric Eye Blots Area Parts Placement Area CAMEL IS A PROFESSIONAL DIE CASTING MOLD MANUFACTURER AND SUPPLIER IN CHINA. OUR ENGINEER TEAM WITHIN MORE THAN 12 YEARS OF TOOL AND DIES DESIGNING EXPERIENCE! PLEASE CONTACT US IF YOU HAVE ANY ALUMINUM DIE CASTING MOLD PROBLEMS IN ANY INDUSTRY! contact

  • How to Choose a Die Casting Machine | cameldie.com

    How To Choose A Die Casting Machine As there are many brands of die casting machines, some of them are well-known and not so well-known. Here are a few more well-known brands of die-casting machines. The more famous die casting machine companies in China are LK , Yizumi , Chit Shun , Chinaxjs , Ruida, and so on. Ligin and Yizumi have more domestic use companies, and their brand reputations are better. The more famous ones abroad are Buhler , Fulai, Idra , Toshiba, Ube, and so on. Selection principle of die casting machine: Understand the types and characteristics of die casting machines. Consider the alloy types of die castings and related requirements. The selected die-casting machine should meet the operating conditions and technical requirements of die-casting parts. The selected die-casting machine should have a certain margin in terms of performance, parameters, efficiency, and safety to ensure satisfactory yield, productivity, and safety. Under the premise of ensuring point 4, the reliability and stability of the machine should also be considered, and a die-casting machine with reasonable cost performance should be selected accordingly. For the production scale of die-casting parts with many varieties and small production volume, under the premise of ensuring point (4), compatible specifications should be selected scientifically, so that the required varieties can be covered and the die-casting can be reduced. The number of machines. Among the various technical indicators and performance parameters of the die casting machine, the first thing to pay attention to is the injection performance. In the case of the same or similar specifications, the model with a wide range of injection performance parameters is preferred. When possible, try to equip with mechanized or automated devices, which are beneficial to product quality, production efficiency, safe production, enterprise management, and cost accounting. Evaluate the effect of the selected die-casting machine, including yield, productivity, failure rate, maintenance frequency and workload, performance stability, operational reliability, and safety, etc.

  • Our Advantage | cameldie.com

    IN THE DIE CASTING PROCESS, IT IS THE DIE THAT IS KEY FOR PRODUCTIVITY AND PART QUALITY We focus on die casting dies design and build, and we have accrued more than 11 years of experience exporting die casting die (100% exporting ), customers can enjoy the high quality of service, responsiveness, and flexibility from CAMEL . We aim to create a long-term partnership that will be based on competence, reliability, and engagement with customers. At the customer’s request, We can assist in any segment of the development process: from castability optimization of the desired castings, through die design and building, to prototyping and sampling. Our valuable experience and commitment to quality ensure our customers will create a quality product at a competitive price. 1. The optimized runner design and heat energy control prove to be essential factors for achieving the highest productivity and part quality. The die has the biggest impact on the casting driven successful or not. Precision and dimensional accuracy are not the only ones needed to efficiently produce high-quality castings. The optimized runner design and heat energy control prove to be essential factors for achieving the highest productivity and part quality. Our job is to develop and build dies that support best-in-class cycle-time, part quality, and die-life. Fixed Side Movable Side 2. To get the optimized runner system, we always do the flow simulation base on the calculation of energy inputs and outputs as a basis for an optimal cooling design and optimize the runner layout to get the best one for each dies. Benefit: Most die casting dies could be sampled successfully in one time to export the dies in a short time. The customer can do die-casting with optimal cycle time from the beginning. The casting quality and die life can be guaranteed with no compromise. Free Quote & Part Analysis → 3. In casting production, the problems with the die are often the leading cause of production stoppages. Improving factory utilization usually offers the most potential benefit. In casting production, the problems with the die are often the leading cause of production stoppages. We have considered these potential issues and solves them by mold design in advance to minimize downtime. Quick to change insert on the die-casting machine directly. (<10 min from shot to shot are possible). Do tempering before the mold trial to guarantee the die-life. Do PVD coating for the deep feature areas and easy flush areas. PVD Coating Treatment Optimized Design 4. We have standardized the trial processes to guarantee mold life. The Irregular mold trial process could put the operators in a high-risk situation also shortens the mold life heavily. 1) Use spotting blue to confirm the parting line whether is in good sealing property, avoid no materials fly out to hurt the operator. 2) Use infrared thermography to confirm if the mold temperature is good enough to start the trial, avoid the risk of mold crack from sampling in Unsuitable temperatures. Spotting Blue 5. Even once reasonably well-functioning production has been established, improvements in quality can be used to minimize waste and rework rates. We analyze the potential and actual casting defects and develop a solution suggestion for customers, we perform very precise and detailed simulations for this purpose. Exact design and placement of squeeze pins where required, jet cooling, additive manufactured contour parts and partial insert, vacuum support. 6. We are a professional technical team and IT team to continuously improve the capability study of our processes. We have passed ISO TS 16949 and ISO 9001. All of our working processes are integrated into an autonomous ERP system, all of our die castings dies can be guaranteed to complete on time, we are a professional technical team and IT team to continuously improve the capability study of our processes. Jet Cooling Design ISO 9001:2015 CAMEL Autonomous ERP System Our success is based on highly qualified and trained employees. Systematic development of skills helped us in building a strong, experienced, and innovative team. Continuous improvement of our knowledge ensures sustainable success. Preliminary Version Optimizing Version Fixed Side Movable Side

  • 9 Steps Of Die Casting Die(HPDC Mold) Design II | cameldie.com

    Steps Of Die Casting Die(HPDC Mold) Design II Die casting mold design, We often said as design of die casting dies or die casting die design. Also, Which be called die casting mould design in some countries. The basic die casting die design steps are summarized as follows: 1. Understand and determine the task 2. Design preparation 3. Select the parting surface and die casting system 4. Choose the die casting equipment 5. Determine the appropriate mold structure and draw the mold assembly sketch * 6. Calculation and verification of relevant parameters * 7. Draw the die casting mold pattern * 8. Proofreading and review * 9. Organize and archive design materials Next, Introduces steps 4-5 of die casting mold design on this page. STEPS OF DIE CASTING DIE(HPDC MOLD) DESIGN II 4. Choose the die casting equipment 4 Dies design is carried out according to the type of die casting equipment, so it is necessary to be familiar with the performance, specifications, and characteristics of various die-casting equipment. For die casting machines, the following should be understood in terms of specifications: clamping force, pressure chamber capacity, injection pressure, mold opening stroke, mold opening force and ejection force, mold installation dimensions, ejection device and its size, die casting machine Gate displacement distance, gate sleeve positioning ring size, mold maximum, and minimum thickness, installation matching size, etc. According to the quality of the die casting and the total projected area of the die casting on the parting surface, the required clamping force is calculated, and the overall dimensions of the die are preliminarily estimated. Combined with the actual die casting machine situation of the die casting production unit, the die casting machine is initially selected. 5. Determine the appropriate mold structure and draw the mold assembly sketch * 5 The main content of this part includes (1) The form of the gating system and the overflow system, including the sprue, the runner, and the position, shape, and size of the inner gate, as well as the exhaust overflow method, etc. (2) The structure of the formed part (3) The demolding method of die castings, the method and sequence of mold opening, the selection and design of the ejection mechanism, etc. (4) The structure of the main parts and the ruler and the required installation cooperation relationship (5) Selection of mold base, combination design of supporting and connecting parts (6) Cooling and heating method and mold temperature adjustment system When determining the structure of the die-casting mold, the following conditions should be considered (1) Each structural element in the mold should have sufficient rigidity to withstand the clamping force and the back pressure during liquid metal filling without deformation. All parts in contact with molten metal should be heat-resistant die steel. (2) Try to prevent the molten metal from impacting or scouring the core from the front to avoid erosion at the inflow of the inner gate. When the above situation is unavoidable, the eroded part should be made into a block type so that it can be replaced frequently. It is also possible to use a larger internal gate section and maintain the thermal balance of the mold to improve the life of the mold. (3) Reasonably choose the combination of mold inserts to avoid sharp corners and sharp splits to meet the requirements of heat treatment. The push rod and core hole should keep a certain distance from the edge of the insert to avoid weakening the strength of the insert. The fragile parts of the mold should also consider the inlay structure for easy replacement. (4) After splicing at the forming part, it is easy to leave splicing marks on the die casting. The location of splicing marks should consider the aesthetics and performance of the die casting. (5) The size of the mold should correspond to the selected die-casting machine. Drawing a sketch of the mold structure can check the coordination relationship between the considered structures. For inexperienced designers, this sketch is used to solicit the opinions of mold manufacturing and mold operators so as to introduce their rich practical experience into the design. 6. Calculation and verification of relevant parameters * 6 (1) Calculate the working size of the formed part; (2) Calculate and verify the thickness of the side wall and bottom plate of the formed part cavity to determine the size of the template; (3) Calculate core-pulling force, core-pulling distance, mold-opening stroke required for core-pulling, and size of related core-pulling parts such as diagonal pins; (4) Check of push rod compression instability; (5) Calculate the temperature adjustment system parameters; (6) Checking the relevant parameters of the die casting machine Link to: STEPS OF DIE CASTING DIE(HPDC MOLD) DESIGN I Link to: STEPS OF DIE CASTING DIE(HPDC MOLD) DESIGN III contact

bottom of page