top of page
  • Email
  • LinkedIn

搜尋結果

57 results found with an empty search

  • Trim Mold | cameldie.com

    Design review of trim mold is one of the keys to the cost of making a die casting mold. Both precision and dimensional accuracy are needed to efficiently produce high-quality castings. TRIM MOLD

  • Technical Specifications Of Die Casting Dies | cameldie.com

    In order to smoothly process the dies manufacturing, trial mold, and normal use, the technical requirements for manufacturing, assembling, use, and other processes must be indicated on the assembly drawing and part drawing of the Die-casting dies. Technical specifications of die casting dies After the design of the Die-casting dies structure is completed, there are more important and more complex manufacturing, assembly, mold trial, and production application processes. To smoothly process the dies manufacturing, trial mold, and normal use, the technical requirements for manufacturing, assembling, use, and other processes must be indicated on the assembly drawing and part drawing of the Die-casting dies. 1. Technical requirements that should be indicated in the Die-casting dies assembly drawing 2. Technical requirements for the shape and installation position of the Die-casting dies 3. Technical requirements for overall assembly accuracy of Die-casting dies 4. Dimensional tolerance and fit of structural parts of Die-casting dies 5. Geometric tolerances and surface roughness requirements of Die-casting dies structural parts 1. Technical requirements that should be indicated in the Die-casting dies assembly drawing 1 The assembly drawing should indicate the following technical requirements (1) The maximum external dimensions of the dies(length×width×height). To facilitate the review of whether there is interference between the sliding components and the machine components when the dies are working, the size, position, and stroke of the hydraulic core-pulling cylinder, the size and position of the slider core-pulling mechanism, and the position of the slider to the endpoint sketches should be drawn. (2) Choose the Die-casting machine model. To facilitate the review of whether there is interference between the sliding components and the machine components when the dies is working, the size, position, and stroke of the hydraulic core-pulling cylinder, the size and position of the slider core-pulling mechanism and the position of the slider to the end point sketches should be drawn. (3) Choose the inner diameter, specific pressure, or nozzle diameter of the pressure chamber. (4) The minimum mold opening stroke (if the maximum mold opening stroke is limited, it should also be noted). (5) Push out the itinerary. (6) Indicate the cooling system, hydraulic system inlet, and outlet. (7) Pouring system and main dimensions. (8) Action stroke of special motion mechanism. 2. Technical requirements for the shape and installation position of the Die-casting dies 2 The shape and installation position of the Die-casting dies should meet the following technical requirements: (1) The edges of each template should be chamfered 2×45°, and the mounting surface should be smooth and flat, and there should be no protruding screw heads, pins, burrs, and scratches. (2) Mark obvious marks on the non-working surface of the dies, including the following: product code, dies number, manufacturing date, and dies manufacturer's name or code. (3) The movable and fixed molds are respectively provided with screw holes for lifting, and the larger parts (>25kg) should also be provided with lifting screw holes. The effective thread depth of the screw hole is not less than 1.5 times the diameter of the screw hole. (4) The relevant dimensions of the dies installation part should be by the relevant corresponding dimensions of the selected die-casting machine, and the installation and disassembly are convenient. The installation hole diameter and depth of the pressure chamber must be strictly inspected. (5) Except for the guide sleeve hole and the oblique pinhole on the parting surface, all process holes and screw holes in the dies manufacturing process should be blocked and flush with the parting surface. 3. Technical requirements for overall assembly accuracy of Die-casting dies 3 The overall assembly accuracy of the die-casting dies should be guaranteed to meet the following technical requirements (1) The parallelism between the dies parting surface and the installation plane of the movable and fixed dies seat plates is selected according to the provisions of the table below: The specified unit of parallelism between the dies parting surface and the installation plane of the movable and fixed dies base (unit: mm) The maximum linear length of the measured surface ≤160 160~250 250~400 400~630 630~1000 1000~1600 Tolerance value 0.06 0.08 0.1 0.12 0.16 0.2 (2) The verticality of the installation plane of the guidepost, guide sleeve, and fixed mold seat plate should be selected according to the provisions of the table below: The vertical regulation of guide post and guide sleeve to the installation plane of fixed and movable dies seat plate (unit: mm) Effective sliding length of guide post and guide sleeve ≤40 40~63 63~100 100~160 160~250 Tolerance value 0.015 0.02 0.025 0.030 0.040 (3) On the parting surface, the plane of the fixed dies and the movable dies insert should be flush with the fixed mold set plate and the movable dies set plate or slightly higher, but the height should be within the range of 0.05~0.10mm. (4) The push rod and the reset rod should be flush with the parting surface respectively. The pushrod is allowed to protrude from the profile surface, but not more than 0.1mm, and the reset rod is allowed to be lower than the profile surface, but not more than 0.05mm. The pushrod should be able to rotate flexibly in the pushrod fixed rod, but the axial clearance should not be greater than 0.10mm. (5) All movable parts of the dies should be accurate in position, reliable in movement, and free of skew and sluggishness; no movement between relatively fixed parts is allowed. (6) The sliding block is positioned accurately and reliably after the dies are opened. At the end of the core pulling action, the distance between the drawn core end face and the end face of the corresponding shape or hole on the casting shall not be less than 2mm. The sliding mechanism should be flexible in guiding and sliding, stable in movement, and proper clearance. After closing the dies, the sliding block and the wedge block should be compressed, the contact area is not less than 1/2, and has a certain prestress. (7) The surface roughness Ra of the runner should not be greater than 0.4m, the connecting part should be smoothly connected, the inserting part should be close, and the molding inclination should not be less than 5°. (8) When clamping the dies, the molding surface should fit closely. If there is a gap in some parts, the gap size should not be greater than 0.05mm (except for the exhaust groove). (9) The cooling water channel and temperature control oil channel should be unblocked, there should be no leakage, and the inlet and outlet should be clearly marked. (10) The surface roughness Ra of all forming surfaces is not greater than 0.4m, and all surfaces are not allowed to be damaged or rubbed. Injuries or micro cracks. 4. Dimensional tolerance and fit of structural parts of Die-casting dies 4 Die-casting dies work at high temperatures. Therefore, when selecting the matching tolerances of die-casting dies parts, not only a certain assembly accuracy is required at room temperature, but also the structural dimensions of each part are required to be stable and reliable in operation at working temperature. Especially the parts that are in direct contact with the molten metal are subjected to high pressure, high speed, and thermal alternating stress during the filling process, and the clearance with other parts is prone to change, which affects the normal progress of die casting. The change of the fit-gap is not only related to the temperature but also related to the material, shape, volume, heating degree of the working part of the parts of the dies, and the actual fit properties after processing and assembly. Therefore, the working conditions of die-casting dies parts are very complicated. Generally, the fit clearance should meet the following two requirements: ① For the fixed parts after assembly, there will be no position deviation under the impact of the molten metal. After being heated and expanded, the deformation cannot make the fit too tight, so that the dies inserts and the sleeve plate are locally overloaded seriously, causing the dies to crack. ② For parts that are active during work, after being heated, the nature of the clearance fit should be maintained to ensure normal movement, and during the filling process, the molten metal will not cause the fit clearance. Combined with the actual situation of die-casting dies manufacturing and use, the tolerance and matching accuracy of the main parts of the die-casting dies are now recommended as follows: (1) Tolerance of forming dimensions: The general tolerance level is specified as IT9, H for holes, h for shafts, and GB/T180F for length. Individual special sizes can be selected IT6~T8 level when necessary. (2) Tolerance and fit of matching parts for forming parts: ① The fixed parts of the larger parts that are in contact with the molten metal and are heated, mainly include the sleeve plate and the insert block, the insert block and the core, the sleeve plate and the sprue sleeve, the insert block and the shunt cone, etc. The integral type and accuracy are H7/h6 or H8/h7. The inlaid hole is H8, the largest one in the shaft is h7, and the rest of the spare parts in the shaft is js7, and the cumulative tolerance of the assembly is h7. ②The matching type and accuracy of the movable parts (including push rods, push tubes, formed push plates, sliders, slider grooves, etc.), the hole is H7, the axis is e7 Or d8. ③The height tolerance of inserts, inserts, and fixed cores is F8. ④The tolerance of the base size is taken as js8. (3) Tolerance and coordination of template size: the tolerance of the base size is taken as js8; the core is cylindrical or symmetrical, and the centerline size tolerance of the hole from the base to the fixed core on the template is taken as js8; the core is non-cylindrical Or when it is asymmetrical, the edge dimension tolerance from the base surface to the fixed core on the template is taken as js8; the thickness dimension tolerance of the combined sleeve plate is taken as h10; the depth dimension tolerance of the insert hole of the integral sleeve plate is taken as h10. (4) Dimension tolerance of sliding groove: ①The dimensional tolerance of the sliding block groove to the base surface is taken as f7. ②For the combined sleeve, the dimensional tolerance from the slider groove to the bottom surface of the sleeve is taken as js8. ③For the integral sleeve plate, the dimensional tolerance from the slider groove to the bottom surface of the insert hole is taken as js8. (5) Tolerance and fit of guide post and guide sleeve: For the fixed position of the guide post and guide sleeve, the hole is H7, and the axis is m6, r6, or k6; for the clearance fit of the guide post and guide sleeve, the hole is H7, and the axis is k6 or printed. ; If the hole is H8, the axis is e7. (6) The size between the guide post and guide sleeve and the base surface: the dimensional tolerance from the base surface to the center line of the guide post and guide sleeve is js7; the dimensional tolerance of the distance between the center line of the guide post and guide sleeve is js7, or cooperated processing. (7) The tolerance and fit between the push plate guide post and the push rod fixed plate and the push plate: the hole is H8, and the shaft is f8 or f9. (8) Tolerance of core table, push rod table, and corresponding dimensions: the depth of the hole table is +0.05~+0.10mm, and the height of the pillow block is -0.03~0.05mm. (9) The tolerance level of the unmarked tolerance dimensions of various parts is IT14 level, H for holes, h for shafts, and length (height) and distance dimensions are selected according to js14 accuracy. 5.Geometric tolerances and surface roughness requirements of Die-casting dies structural parts 5 Geometric tolerance is the deviation of the surface shape and position of the part. The deviation range of the geometric tolerance of the forming part of the formed part and the reference part of all other structural parts is generally required to be within the tolerance range of the size, and no additional mark is added on the drawing. The geometric tolerances of other surfaces of the parts of the Die-casting dies are selected according to the table below and marked on the drawing. The table below Selection accuracy grades of geometric tolerances of die casting dies parts: Geometric tolerances of relevant elements Selection accuracy Coaxial between the axis of the fixed part of the guide post and the axis of the guide sliding part Level 5~6 The coaxial of each forming step surface of the circular insert to the mounting surface Level 6 Concentricity between the inner diameter of the guide sleeve and the outer diameter axis Level 6~7 The axis of the fixed hole of the insert in the sleeve is coaxial with the common axis of the holes Level 7~8 on the other sleeves The perpendicularity between the axis of the guide post or the guide sleeve Level 5~6 mounting hole and the parting surface of the sleeve plate The two adjacent sides of the set of plates are the perpendicularity of the process reference plane Level 5~6 The perpendicularity of the two adjacent sides of the insert and the other side of the parting face Level 6~7 The perpendicularity between the surface of the insert hole in the sleeve and the parting surface Level 7~8 The perpendicularity of the axis of the core fixing hole on the insert to the parting surface Level 7~8 Parallelism of the two planes of the plate Level 5 The parallelism of the opposite sides of the insert and the bottom of the parting face Level 5 The axis of the insert hole in the sleeve and the end face of the parting surface are circularly run out Level 6~7 The radial runout of the axis of the circular insert to its end face Level 6~7 Parallelism of the parting surface of the insert, the sealing surface of the slider, the combined surface ≤0.05mm of the combined block, etc. The surface roughness of die-casting dies parts not only affects the surface quality of the die-casting part, but also affects the use, wear, and life of the dies. It should be selected according to the work needs of the part. The appropriate surface roughness is shown in the table below. Surface roughness of Die-casting dies: Surface position Surface roughness Ra/pm The forming surface of inserts, cores and other forming parts and the surface of the gating system 0.1~0.2 The mating surface of inserts, cores, sprue sleeves, shunt cones, and other parts ≤0.4 The mating surfaces of guide posts, guide sleeves, push rods, diagonal pins and other parts ≤0.8 Mold parting surface, joint surface between each template ≤0.8 Support surface of core, push rod, sprue bushing, shunt cone and other parts ≤1.6 Other non-working surfaces ≤6.3 contact

  • How does Cold-chamber Die Casting Machine Work | cameldie.com

    This article will explain the working principle and correct operation method of cold-chamber die casting machine How does cold-chamber die casting machine work During operation, the pressure chamber is placed vertically, and the upper punch is above the pressure chamber, and the lower punch is located at the position where the nozzle orifice is blocked, to prevent molten metal from pouring into the pressure chamber and flowing into the nozzle hole by itself. The opening and closing movements of the mold move horizontally. After the mold is opened, the die casting remains in the movable mold. The working steps of the cold chamber die casting machine are as follows: Close the mold. Pour molten metal into the press chamber manually or by other means. The upper punch moves down at a lower injection speed and enters the pressure chamber until it just touches the molten metal surface. When the upper punch is turned to a higher injection speed and pressed down, the lower punch and the upper punch will move down synchronously while maintaining the relative distance between the upper punch and the molten metal. When the lower punch moves down to let out the nozzle orifice, it just descends to the nozzle part and is supported, therefore, the upper and lower punches squeeze the molten metal at high speed to the nozzle hole (part of the sprue) injection. The molten metal is filled into the mold cavity from the inner gate through the sprue composed of the nozzle, the sprue sleeve, the tapered hole of the fixed mold, and the diverter. After the filling is completed, the upper punch can still maintain a certain pressure until the molten metal in the cavity is completely solidified into the die casting 1, and the molten metal in the runner and the pressure chamber solidifies into the direct gate and the remaining material respectively cake. The upper punch lifts and resets; at the same time, the lower punch moves upwards to cut away the remaining cake that is still connected to the straight gate. The lower punch continues to rise, lift the remaining cake out of the top surface of the pressure chamber, and then take it away manually or by other means. Move the lower punch down and reset to block the nozzle orifice. Open the mold, the die-casting part and the straight gate remain on the movable mold together, and then eject and take out the die-casting part; once the remaining material cake is cut away, the mold opening action can be executed immediately, or it can be executed at an appropriate time, Has nothing to do with the movement of the lower punch to complete the lifting and resetting.

  • About CAMEL Team | cameldie.com

    CAMEL DIE Team(Photo & Details) SHENZHEN CAMEL DIE LIMITED MANAGEMENT TEAM Chief Executive Officer Simon Rain is one of CAMEL's founders, has 20 years of experience in the mold industry, specializing in mold designing, project management, and factory management. Name: Simon Rain Email: simon@cameldie.com Phone: +86 18923766315 Managing Director One of the founders of CAMEL DIE has 13 years of marketing development, customer service, and company management experience Welcome to contact with me about any of strategic cooperation. Or any complaints about the quality and service of our product. Name: Leo S.Tian Email: leo@cameldie.com Phone: +86 18948310091 Chief Financial Officer Participate in formulating the company's medium and long-term development strategy and annual work plan, 10 years of finance experience; It is my pleasure to join CAMEL in 2019. Name: Copper Email: sales@cameldie.com Phone: +86-755-83440917 Project Manager Ten years ago, I joined CAMEL as a mold designer, and now I am a project manager after managing many different famous projects from North America and West Europe. My next goal is to have a project management system be more intelligent and effective continuously, reduce the error rate and speed up manufacturing. Name: Hedy Email: sales@cameldie.com Phone: +86-755-83440917 Engineer Manager In August of 2016, I joined CAMEL Die Limited as the design leader for die-casting molds, mainly responsible for the die casting mold quotations, project development, mold design, personnel management, after-sales service, corporate design standard drafting, document management, etc. Name: Mankiw. Xu Email: sales@cameldie.com Phone: +86-755-83440917 Overseas Manager Originally from Canada, having travelled extensively and gaiend invaluable experience in business development and sales. In the die casting mold indsutry for 10 years, working with our HQ in China. Based out of Nashville, TN for convenient travel and communcation with our current and prospective customers. Name: Chris Furlong Email: sales@cameldie.com Phone: +1 615 968 3002

  • 9 Steps Of Die Casting Die (HPDC Mold) Design | cameldie.com

    We will introduce each step in detail. It was divided into three web pages to share and now introduces steps 1-3 of die casting mold design on this page. Steps Of Die Casting Die(HPDC Mold) Design Die casting mold design, We often said as the design of die casting dies or die casting die design. Also, Which be called die casting mould design in some countries. The basic steps are summarized as follows: 1. Understand and determine the task 2. Design preparation 3. Select the parting surface and die casting system 4. Choose the die casting equipment 5. Determine the appropriate mold structure and draw the mold assembly sketch * 6. Calculation and verification of relevant parameters * 7. Draw the die casting mold pattern * 8. Proofreading and review * 9. Organize and archive design materials We will introduce each step in detail. It was divided into three web pages to share and now introduces steps 1-3 of die casting mold design on this page. STEPS OF DIE CASTING DIE(HPDC MOLD)DESIGN I 1. Understand and determine the task 1 The task book of die-casting parts is usually given by the part designer, providing a formal part drawing after review and signing, and explaining the grades and performance requirements of the die-casting alloy materials, the use requirements or technical requirements of the die-casting parts, the production quantity and the delivery of the die-casting parts Delivery period, etc. The mold design task book is generally proposed by the die-casting parts technician according to the task book of the die-casting part, and the mold designer uses the die-casting part-task book and the mold design task book as the basis to design the mold. 2. Design preparation 2 1) Collect relevant information Collect and sort relevant parts design, die-casting process, die-casting equipment, mechanical processing, and special processing materials for use in mold design. Understand the melting of die-casting raw materials and die-casting process parameters. Digest the process data, analyze whether the die casting method, equipment model, material specification, mold structure type, and other requirements proposed in the process task book are appropriate, whether the die casting equipment of the die casting production unit, the processing capacity and equipment conditions of the die processing unit can be implemented. Die-casting materials should meet the strength requirements of die-casting parts and have good fluidity, uniformity, isotropy, and shrinkage. According to the purpose of die-casting parts, die-casting materials should meet the requirements of electroplating metal conditions, decorative properties, necessary mechanical properties, or weldability. 2) Structural analysis of die castings Digest the drawings of die-casting parts, understand the purpose of the parts, and analyze the technical requirements of die-casting parts such as manufacturability and dimensional accuracy. For example, what are the requirements for die-casting parts in terms of appearance and performance, whether the geometric structure of die-casting parts, slope inserts, etc. are reasonable, the allowable degree of die-casting defects such as flow marks, shrinkage holes, and porosity, whether there is a coating, Electroplating, machining, etc? Select the dimension with the highest dimensional accuracy of die-casting parts for analysis, and see if the estimated die-casting tolerance is lower than that of die-casting parts, and whether die-casting parts can be die-casted. Specifically including (1) Under the condition of satisfying the structural strength of die castings, a thin-walled structure should be adopted. This not only reduces the weight of die casting but also reduces the thermal load of the mold. The wall thickness of die castings should be uniform, avoid hot spots, reduce local heat concentration, and reduce thermal fatigue of mold materials. (2) All corners of die-casting parts should have appropriate casting fillets to avoid the formation of edges and corners in the corresponding parts of the mold, resulting in cracks and corners. (3) Narrow and deep cavities should be avoided as far as possible on die castings, so as not to cause sharp splits in the corresponding parts of the mold, which will deteriorate the heat sink and cause fractures. When the die castings have smaller size round holes, they can only be on the surface of the casting. Press the punching hole position of the sample, and then post-process the die-casting part. 3. Select the parting surface and die casting system 3 According to the basic principles of selecting the parting surface, the position of the parting surface is reasonably selected, and the number and distribution of the cavity are determined according to the structural characteristics of the die-casting part, and the form of the gating system is selected reasonably so that the die-casting part has the best die-casting forming conditions and the longest The mold life and the best mold machining performance. Link to: STEPS OF DIE CASTING DIE(HPDC MOLD)DESIGN II Link to: STEPS OF DIE CASTING DIE(HPDC MOLD)DESIGN III contact

  • High Pressure Aluminum Alloy Die Casting Mold | cameldie.com

    Aluminum die casting mold manufacture of (HPDC) high pressure die casting molds, Commonly used alloys metals: ADC12, A380/ADC10, A360, etc. What is HPDC - Aluminum Alloy Die Casting Molds Aluminum alloy die castings can be used in a wide range of industries. Like: Motors, water pumps, electrical appliances, lamps, automobile and motorcycle accessories, electronics, home appliances, and some communication industries, machinery industries, etc. Some high-performance, high-precision, high-quality aluminum alloy products with high toughness are also used in large aircraft, ships, etc. In relatively demanding industries. They mainly used still in the parts of some equipment. Aluminum die parts have thermal conductivity, electrical conductivity, good cutting performance, small linear shrinkage, so it has good filling performance, low density, high strength, and its tensile strength to density ratio is 9-15. It works at high or low temperatures. At the same time, it also maintains good mechanical properties and has good corrosion resistance and oxidation resistance. Commonly used aluminum die casting alloys metals grades: ADC12,A380/ADC10,A360 etc. The Main Physical of Aluminum Alloys As Below: ● ADC12 has good fluidity, is easy to casting, and has relatively balanced properties; it is the most versatile die-cast aluminum alloy and is often used for parts with low-performance requirements such as auto parts, communication cavities, power tools accessories, and medical equipment. ● A380/ADC10 has good fluidity, is easy to casting, has a higher silicon content, and is better than ADC12 in mechanical properties and high-temperature resistance; it is mostly used in engine brackets, gearbox housings, valve bodies, etc. ● A360 has good forming performance, corrosion resistance, fatigue strength, and medium static strength; it is mostly used in instrument housings, street lamp brackets, etc. The aluminum die casting parts can reach a tolerance : Standard: +/- 0.010 inch per 1 inch — then +/- 0.001 inch for each additional inch Precision: +/- 0.002 inch per 1 inch — then +/- 0.001 inch for each additional inch Aluminum alloy die casting mold life: around 100,000- 300,000 shots for a die casting die life depend upon the part/tool design and the Tool steels used. Commonly Mold Steels Used: H-13, H-13, ESR, Assab 8407, Bohler W302, and Assab 8418. etc. CAMEL used Die casting machines for mold trials ranging from 280 tons to 3000 tons.( 280T, 350T, 500T, 800T, 1250T,1650T, 3000T), Our capability from tooling design to build dies about 12-15 sets of big die casting dies per month. As of 2020 business data, There are over 60% of die tool projects for aluminum alloy die casting molds in CAMEL. CAMEL is a company specializing in high-pressure die-casting molds (HPDC), and currently has 12 years of experience in the mold industry. The main products include aluminum alloy die-casting molds, zinc alloy die-casting molds, and magnesium alloy die-casting molds. From tools design & build to die casting parts pre & mass production, meanwhile including surface treatments service based on customers’ requirement, such as Plating chrome, Plating Tarnish, UV Coating, Powder coating, Painting, Anodizing, Blacking, Impregnating, etc. We are ISO 9001:2015 and IATF 16949:2016 certificated company. Capabilities: Currently, We occupy 54,000 square feet with a workshop plant located at Huizhou City, And another plant 49,000 square feet workshop plant located at Dongguan City, China. Quantities of Major Machines: 15 sets of CNC Machining Centers 5 sets of EDM Machining 2 sets of Wire cutting 2 sets of CMM 2 sets of Projector 2 sets of Spot machine Take care of all projects according to the mold projects management system. DFM (2 days) Moldflow Analysis (24 Hours) Mold Design (2-3 days) Weekly Tooling Schedule Mold Trial Mold Shipment Die Casting Molds We Build: Trimming Die High-Pressure Zinc Alloy Die Casting Mold High-Pressure Aluminum Alloy Die Casting Mold High-Pressure Magnesium Alloy Die Casting Mold Free Quote & Part Analysis → contact

  • How to Choose Steel For Die Casting Mold | cameldie.com

    On this page, you will learn about the types of common die-casting mold steels and their corresponding functions How To Choose Steel For Die Casting Molds What feature of die casting mold steel? Die casting mold steel has the characteristics of high production efficiency, short production process, high casting finish and strength, less machining allowance, and metal material saving. It can produce a good surface and internal quality stably and efficiently. The mold material is required to have high strength, hardness, and thermal stability, especially high thermal strength, thermal fatigue, toughness and wear resistance. Die casting mold generally use hot mold steel H13, SKD61, 8407, 8418. We recommend the steels from these two companies: https://www.swiss-steel.com/ https://www.lkm.com.cn/tool_steel_advantage.php The following requirements when selecting die casting mold steel: Working conditions of the die casting mold The working conditions of die-casting molds are very harsh compared with other molds. Because of different die-casting metals, they have to withstand a high pressure of 150-500MPa. It is often in contact with molten metal at 300℃~1000℃ when working, and the pouring temperature of different die-casting alloys is also different. And the heating and cooling are repeated continuously, and the temperature gradient along the cross-section is very large. When the mold cavity with molten metal injected at a high speed of 150m/s~70m/s, severe wear will occur. Under the action of liquid metal erosion, the metal is easy to adhere to the surface of the mold cavity, and even penetrate into the mold surface to corrode the mold. Other requirements of die casting mold steel Pressure casting can cast parts with complex shapes, high precision, small surface roughness, and good mechanical properties. Therefore, the die-casting mold steel should have the following requirements as below: Greater high-temperature strength and toughness Excellent high temperature wear resistance, oxidation resistance, and tempering resistance stability Good thermal fatigue performance High resistance to melt damage Good hardenability, small heat treatment distortion Good machinability and grinding properties The internal structure of the material is uniform without defects Principles for the selection of die casting mold materials It can meet the requirements of the working conditions of the die-cast material. The mold size is determined according to the size of the die-cast part. Large and medium-sized precision die-casting molds should be made of steel with good processing performance, reliable performance, and long mold life. Free Quote & Part Analysis → H13 die casting mold steel H13 is hot die steel, which is formed by adding alloying elements on the basis of carbon steel. H13 die steel is used to manufacture forging dies with high impact load, hot extrusion dies, precision forging dies; die-casting dies for aluminum, copper, and their alloys. 8407 die casting mold steel 8407 is mainly used for various metal die-casting molds, high-quality plastic injection molds. Such as engine molds, automobile lamp molds, etc. In die-casting molds, 8407 steel can be used for mold inserts, cores, cavities, gates, plungers, sleeves, etc. ASSAB 8407 The advantages of 8407: excellent thermal shock resistance and crack resistance, high-temperature strength, regardless of size, toughness, and ductility, high isotropy, excellent workability, and polishability, excellent hardenability, good heat treatment size Stability, and improvement of mold life. SKD61 die casting mold steel SKD61 has good toughness and high-temperature fatigue resistance, can withstand temperature fusion, is suitable for long-term work at high temperatures, and has good cutting performance and polishing performance. It is suitable for making aluminum, zinc, copper alloy die-casting molds, etc.; it is an ideal material for making ejector pins and barrels. 8418 die casting mold steel 8418 has excellent resistance to thermal fatigue cracking, thermal shock cracking, thermal wear, and plastic deformation. These unique properties make it the best choice for die-casting die steel. Used for zinc, magnesium, aluminum, titanium alloys die casting mold, etc. ASSAB 8418 has the following characteristics: 1. Excellent toughness, ductility, and homogeneity 2. Excellent anti-tempering softening performance 3. Excellent high-temperature strength 4. Excellent hardenability 5. Excellent heat treatment dimensional stability and plating performance How to improve mold life of die casting mold steel: 1.After heat treatment, the die-casting mold steel can ensure its required strength, hardness, stability, thermal fatigue resistance, and material cutting performance. 2.Strengthening the surface of die-casting die steel is currently the most effective way to extend the mold life of die-casting die steel. There are three main types of surface strengthening: It is not changing the surface chemical composition, laser phase change hardening, etc. It is changing the surface chemical composition, nitriding, etc. It is forming a covering layer on the surface, processing by vapor deposition technology, etc. By adjusting the general heat treatment process, the strength and toughness of steel can be effectively improved, and the mold surface can be given high hardness, wear, and corrosion resistance, seizure resistance, low friction coefficient, and many other excellent properties, so that the service life of die casting mold steel can be increased several times or even dozens of times. contact

  • Die Casting Mold Design And Build | cameldie.com

    CAMEL offers specialized die casting mold development and manufacturing for aluminum, Zamak, magnesium, and trim die in all industries. View Our Gallery of Excellence All Designed to Enhance Your Production Efficiency and Quality. Explore Our Gallery: Discover Precision Die-Casting Molds, Trial Production Cases, and Triming die and CNC Fixtures. Die-Casting Molds we bring proven expertise to meet your die-casting mold needs,With over 60% of our molds serving the automotive and machinery industries, and extensive experience in outdoor lighting, telecom, and Office Furniture. Trial Production Cases Our trial production services ensure your molds are production-ready , optimizing processes and performance so you can transition to mass production seamlessly and efficiently. Triming die and CNC Fixtures Beyond molds, we provide essential production tools like trimming dies, CNC fixtures, and inspection jigs, ensuring comprehensive support for your die-casting operations Your One-Stop Solution for Seamless Die-Casting Operations – From Precision Die-Casting Molds to Trial Production Cases and Essential Production Tools, we’re ready to serve you with proven expertise. Contact us today for all your die-casting needs! BLOG Die casting companies What is die casting What is die casting mold HPDC VS LPDC die casting What is Aluminum die casting mold High-pressure Zinc alloy die casting molds What is high-pressure Magnesium die casting mold Steps of die casting mold(HPDC mold)design Failure mode and analysis of die-casting dies How to extend the life of die casting tool contact us

  • Glossary of Die Casting Terms | Mold Components | cameldie.com

    Mold Components of a die casting mold, CAMEL is a professional die casting mold manufacturer based in China, has a design team with more than 10 years of mold industrial experience. Mold Components of a die casting mold In order to give you a better understanding of the various die words, we have made the following two pictures to give you a better understanding of the relationship between the various die components: Socket head cap screw(HSHCS) Shot sleeve Retaining insert Guide bushing Clamping slot A plate Cavity Guide pin Runner plate Core Heel block Runner Die casting part Ejector retainer plate Ejector plate Ejector pin Overflow Venting passage Vent insert Return pin Safety lock B plate Ejector pin Rails / ejector housing Water connector Support pillar

  • TRIM DIE | cameldie.com

    Trim dies are indispensable tools for high quantity production. Unprofessional mold makers need to adjust the multi-cavity trim die many times by welding. TRIM DIE Using trim tools to labor cost. We focus on building quality die casting dies and trim tools to help the customer save costs for many years. To lower the labor cost and speed up processing in the example below, CAMEL preferred to build five sliders to remove the burr for these 2.0mm small holes (total 10pcs). BLOG contact Die casting companies What is die casting What is die casting mold HPDC VS LPDC die casting What is Aluminum die casting mold High-pressure Zinc alloy die casting molds What is high-pressure Magnesium die casting mold Steps of die casting mold(HPDC mold)design Failure mode and analysis of die-casting dies How to extend the life of die casting tool

  • HPDC vs LPDC Die Casting | cameldie.com

    On this page, you will learn about the differences between HPDC and LPDC, and their functions HPDC vs LPDC Die Casting High-pressure die casting(HPDC) High-pressure casting is a process in which molten metal is poured into a pressure chamber so that the molten metal fills the mold cavity at high speed and then solidifies under high pressure to form a casting. The flow speed during filling can reach 30-80mm/s, and the time for filling the cavity is extremely short. Advantages and disadvantage of HPDC It has the advantages of good surface finish, stable dimensions, and direct molding of thin-walled structures. It is mainly used for the manufacture of shells and other castings, Its work efficiency is high, and it will also provide a smoother surface for finishing. The surface finish depends on the finish of the mold. This high-quality surface can be directly applied to other paints. However, the disadvantage is that it generates high operating and investment costs. In high-pressure production, thicker parts may be difficult to cast. Porosity may also occur in high-pressure die-casting parts, which generally cannot be heat-treated and have high operating costs. Feature and application of HPDC High-speed, high-pressure, and metal casting are the main characteristics of pressure casting production. Thin-walled castings with complex shapes can be cast, and fine grains, holes, teeth, grooves, etc. can be directly cast. The dimensional accuracy and surface quality of the castings are relatively high. High, realizing less cutting or no cutting. Due to the high production efficiency of this die-casting machine and the high metal utilization rate, the application in the die-casting production of zinc, aluminum, and magnesium alloys has a growing trend. The strength and surface bending hardness of the casting are higher, and the tensile strength is 25%~30% higher than that of sand casting. However, due to the fast filling speed of liquid metal, the gas in the cavity is difficult to discharge, and it is often filled with gas under the surface Therefore, under normal circumstances, die castings cannot be heat treated or mechanically processed to avoid porosity on the surface of the casting. HPDC mainly used for the mass production of non-ferrous metals such as aluminum, magnesium, zinc, copper, etc., and it is widely used in industries such as automobiles, meters, electronics, aerospace, lighting, furniture, mechanical, hardware, and communication, etc. In recent years, new technologies such as vacuum die casting, new processes, as well as new equipment such as double-punch die-casting machines, horizontal parting full-vertical die casting machines, etc., have continued to emerge. Although the quality of castings has been greatly improved to effectively control casting defects, there are still have pores, shrinkage holes, and shrinkage porosity. At the same time, due to the continuous emergence of new die-casting materials, the scope of application of die casting will continue to expand. Free Quote & Part Analysis → Low-pressure die casting(LPDC) LPDC is to make the liquid alloy fill the cavity from bottom to top under lower pressure, and crystallize under pressure to cast the casting part. Therefore, compared with high-pressure casting, the pressure is different and the direction of liquid metal flow is different, and it can be heat treated. Advantages and disadvantage of LPDC Due to the stable filling of LPDC and the same direction of liquid flow and airflow, the castings produced by casting have fewer defects such as porosity and slag inclusion; the structure is dense and the mechanical properties of the castings are high; the filling ability is strong, which is conducive to the formation of clear and clear contours. Castings with smooth surface, so important aluminum alloy castings will be low-pressure casting. Although LPDC has a dense structure and better mechanical properties, its productivity is low. After HPDC, the surface quality is better, but there are inevitably some pores inside, and its productivity is high, so it is more suitable for thin-walled castings, but the castings are shrinkage and loose, not dense, and are not used for castings with high airtightness requirements. Feature and application of LPDC LPDC is used when selecting castings with high air-tightness requirements. The production batch is large, and small and medium-sized non-ferrous metal castings without tightness requirements are HPDC. The difference is that LPDC parts can be strengthened by heat treatment, and the toughness can be greatly improved. Therefore, the design depends on the product wall thickness and the weight of the entire product. If the wall thickness is thicker and the product weight is heavier, the LPDC process should be selected. Otherwise, if the wall thickness is lighter, the HPDC process should be selected. The feature of LPDC as below: LPDC can use sand, metal, graphite, etc., and has the following advantages: Filling with pure molten metal improves the purity of castings. The molten metal fills smoothly, thereby reducing the formation of oxide slag. The casting has good moldability. The molten metal is filled under pressure, which can improve the fluidity of the molten metal, which is beneficial to the formation of castings with clear contours and smooth surfaces, and is more beneficial for the molding of large thin-walled castings. The casting is solidified under pressure, and the structure of the casting is dense. Convenient production and operation, good working conditions, high production efficiency, and easy realization of mechanization and automation. contact

  • 9 Failure Mode and Analysis of Aluminum Alloy Die-casting Dies| cameldie.com

    Failure Mode and Analysis of Aluminum Alloy Die-casting Dies. Aluminum alloy die-casting dies as bearing high temperature, high pressure, and high-speed aluminum liquid carrier, its working environment is extremely harsh. Failure Mode And Analysis Of Die-casting Dies For Aluminum Alloy The vigorous development of the automobile industry and the need for lightweight, so that Aluminum alloy Die-casting is to the large-scale and complex direction of rapid development. Die-casting dies as the main equipment of Die-casting production is to achieve the basic guarantee of high quality and efficient production of Die-casting, its life directly affects the quality of Die-castings, production, as well as the production cost of enterprises and market competitiveness. At present, in most countries, the low service life of the Aluminum alloy Die-casting dies problem becomes the main factor that restricts the further development of die-casting industry, the failure mode of Aluminum alloy die-casting dies is more problematic. 1. Working environment of Aluminum alloy Die-casting dies Aluminum alloy Die-casting dies as a carrier of high temperature, high pressure, high speed Aluminum liquid, its working environment is extremely harsh. When working, the cavity surface is repeatedly flushed by the Aluminum liquid, the specific pressure is more than 40MPa, the inner sprue speed is 30~65m/s, the mold cavity surface temperature can reach 1112°F or more instantly, and after opening the mold, the mold cavity surface temperature drops sharply due to spraying and other reasons. This kind of hot and cold alternating effect in the die-casting cycle repeatedly, making the mold cavity surface temperature changes dramatically. 2. Failure mode and analysis of Die-casting dies According to the field statistics, the common failure forms of Die-casting dies are cracked, cracking, erosion, adhesion, and deformation, etc. Among them, cracked, cracking, erosion, and adhesion mainly occur in the mold cavity surface. (1) Cracked: In each Die-casting cycle, due to the existence of intense heat exchange, the mold temperature changes dramatically, the resulting thermal stress leads to thermal fatigue on the surface of the mold cavity, forming micro cracks. With the increase of Die-casting cycle, the micro-cracks further expand and form crack. This is the main mode of Die-casting dies failure field. (2) Cracking: In the Die-casting production, in addition to thermal stress, due to the high-pressure impact of Aluminum, in the mold internal also produced other stresses. When these stresses exceed the fatigue limit of the mold material will produce cracking, especially easy to produce stress concentration of the sharp corner parts, the possibility of cracking is greater. In addition, if the stress generated during the processing of the mold is not completely eliminated, the mold is more likely to crack. (3) Erosion: Aluminum high speed filling cavity friction heat, so that the surface temperature of the area on the surface of the mold cavity towards the inner sprue, coupled with the violent impact of Aluminum, so the surface protection layer of this part is easy to be destroyed. The Aluminum solution further reacts with the exposed metal substrate to produce harder compounds. In the process of removing these compounds, it is easy to take away the substrate material and expose the fresh surface, and so on, intensifying the damage of the cavity surface, forming a serious erosion. (4) Adhesion: Pressure injection, the instantaneous temperature of the cavity surface at 1112°F. above, at this time, the affinity between the mold material and Aluminum liquid, strong adhesion, easy to form cavity adhesion. (5) Deformation: In the Die-casting process, Die-casting dies to withstand the clamping force, injection backpressure, and other stresses, if the template stiffness is not enough, the mold in these stresses under the long-term role of bending deformation. (6) Movement Obstacle: In Die-casting production, the temperature difference between inside and outside the mold, resulting in different thermal deformation of each part of the mold. Different heat deformation amount leads to different changes in the size of each part of the mold, thus changing the fit relationship between the mold parts. This change of fit relationship may cause significant movement obstruction of the mold parts with relative movement. LINKS: 1. How to Extend The Service Life Of Die-casting Tools 2. How to Choose Steel For Die Casting Mold 3. Steps Of Design Of Die-casting Dies (HPDC Mold) 4. Specification Of Die-casting Dies 5. Die Casting Mold From CAMEL DIE LIMITED 6. Introduction Of Aluminum Alloy Die Casting Mold contact

bottom of page