top of page
  • Email
  • LinkedIn

搜尋結果

57 results found with an empty search

  • Die Casting Mold Design And Build | cameldie.com

    CAMEL offers specialized die casting mold development and manufacturing for aluminum, Zamak, magnesium, and trim die in all industries. View Our Gallery of Excellence All Designed to Enhance Your Production Efficiency and Quality. Explore Our Gallery: Discover Precision Die-Casting Molds, Trial Production Cases, and Triming die and CNC Fixtures. Die-Casting Molds we bring proven expertise to meet your die-casting mold needs,With over 60% of our molds serving the automotive and machinery industries, and extensive experience in outdoor lighting, telecom, and Office Furniture. Trial Production Cases Our trial production services ensure your molds are production-ready , optimizing processes and performance so you can transition to mass production seamlessly and efficiently. Triming die and CNC Fixtures Beyond molds, we provide essential production tools like trimming dies, CNC fixtures, and inspection jigs, ensuring comprehensive support for your die-casting operations Your One-Stop Solution for Seamless Die-Casting Operations – From Precision Die-Casting Molds to Trial Production Cases and Essential Production Tools, we’re ready to serve you with proven expertise. Contact us today for all your die-casting needs! BLOG Die casting companies What is die casting What is die casting mold HPDC VS LPDC die casting What is Aluminum die casting mold High-pressure Zinc alloy die casting molds What is high-pressure Magnesium die casting mold Steps of die casting mold(HPDC mold)design Failure mode and analysis of die-casting dies How to extend the life of die casting tool contact us

  • Zinc Die Casting Mold | cameldie.com

    CAMEL provides Zinc die casting mold manufacture service of development, design, processing. Zamak is the main material for mold. High Pressure Zinc Alloy Die Casting Molds The zinc die casting parts can reach a tolerance: 0.01mm~0.03mm as a requirement. It can be used in a wide range of industries. Like: Toys, lamps, decorations, Auto parts, Electromechanical parts, mechanical parts, electrical components, etc. Zinc alloy material with a low melting point, good fluidity, high strength, high hardness, high precision, and stability. Zinc die parts have good thin wall capability for mass production, and high corrosion resistance. Therefore, zinc alloy die casting is an ideal alternative to many industrial component materials. Commonly used zinc alloy grades: Zn 1#, Zn 2#, Zn 3#, Zn 5#, Zamak8#, etc. The Main Physical Characteristics Are As Below: Currently, We occupy 54,000 square feet with a workshop plant located at Huizhou City, And another plant 49,000 square foot workshop plant located at Dongguan City, China. Quantities of Major Machines: 15 sets of CNC Machining Centers 5 sets of EDM Machining 2 sets of Wire cutting 2 sets of CMM 2 sets of Projector 2 sets of Spot Machine Zinc alloy dies casting mold life depends upon the part/tool design, as well as the Tool steels used. Commonly Mold Steels Used: H-13, H-13, ESR, Assab 8407, Bohler W302, and Assab 8418. etc. Take care all projects according to mold projects management system. CAMEL has been provided zinc die casting molds from custom zinc die casting tooling to middle-sized zinc die casting parts production, meanwhile including surface treatments service based on customers’ requirements, such as Plating chrome, Plating Tarnish, UV Coating, Powder coating, Painting, Anodizing, Blacking, Impregnating, etc. We run all metal products under ISO 9001:2015 and IATF 16949:2016. Die casting machines for mold trials ranging from 280 tons to 3000 tons ( 280T, 350T, 500T, 800T, 1250T,1650T, 3000T), Our capability from tooling design to build dies about 12-15 sets of big die casting dies per month. DFM ( 2 days) Moldflow Analysis (24 Hours) Mold Design (2-3 days) Weekly Tooling Schedule Mold Trial Mold Shipment Free Quote & Part Analysis → Die Casting Molds We Build: Trimming Die High-Pressure Zinc alloy die casting mold High-Pressure Aluminum alloy die casting mold High-Pressure Magnesium alloy die casting mold contact

  • The Reports From Toutiao.com | Cameldie.com

    SHENZHEN CAMEL DIE LIMITED'S core businesses are Die casting mold development & manufacturing, Product structure optimization, and Small-batch mass production of die-casting parts. The Chamber of Commerce and Municipal Government Office in Shenzhen Jointly Visited Member Units Authors, Wang Yanjun 23/03/2021 The Executive Chairman, Wang Yanjun and Secretary-General of Shenzhen Xingtai Chamber of Commerce, Wang Rui, Vice-Chairman, and Wang Xianliang, Deputy Director of the Investment Promotion Office of Xingtai Municipal People’s Government in Shenzhen, jointly visited Vice-Chairman Tian Shimin'S company-Shenzhen CAMEL DIE LTD on the afternoon of March 22. SHENZHEN CAMEL DIE LTD is headquartered near Tian'an Digital City in Longgang District, Shenzhen City. It was established in June 2009. The company initially focused on precision mold engineering services and overseas sales for automobiles and white goods and expanded to the current R&D and manufacturing of plastic molds. Four core businesses are Plastic mold development & manufacturing, Die casting mold development & manufacturing, Product structure optimization, and Small-batch mass production of plastic parts & die-casting parts. After 11 years of experience accumulation and improvement, it has now developed into three domestic branches, two South China factories, two overseas after-sales service points, and multiple overseas technical service cooperation points, integrating R&D, production, and holding industry quality systems of mold manufacturing and product production enterprise integrating certification and after-sales technical support. The main service industries include aviation, automobiles, white goods, agricultural irrigation, lighting, and security. The main service customers are the first-class parts suppliers of world-renowned brands, such as General Motors, Chrysler, General Electric, British Lotus, London Taxi, Bentley, Tier 1 supplier of Boeing aircraft seats, and Whirlpool. CAMELer takes "respect, efficiency, and self-examination" as its core value, and continues to standardize the triangular win-win relationship with customers, employees, and partners. In innovative design concepts, cutting-edge manufacturing technology research and development, scientific management system, and other aspects, make unremitting efforts to form a global industry standard and go all out for the Chinese manufacturing industry to go global. -End- [Reprinted from Toutiao Read the original text] CAMEL IS A PROFESSIONAL DIE CASTING MOLDS MANUFACTURER BASED IN CHINA, OUR DESIGN TEAM WITHIN MORE THAN 12 YEARS OF DESIGNING AND MAKING STABLE ALUMINUM ALLOY HIGH-PRESSURE DIE CASTING TOOL AND DIE EXPERIENCE. PLEASE CONTACT US IF YOU HAVE ANY ALUMINUM DIE CASTING DIES PROBLEMS IN ALL INDUSTRIES!

  • Zinc Die Casting Mold | cameldie.com

    CAMEL provides Zinc die casting mold manufacture service of development, design, processing. Zamak is the main material for mold. What is High Pressure Zinc Alloy Die Casting Molds The zinc die casting parts can reach a tolerance: 0.01mm~0.03mm as a requirement. It can be used in a wide range of industries. Like: Toys, lamps, decorations, Auto parts, Electromechanical parts, mechanical parts, electrical components, etc. Zinc alloy material with a low melting point, good fluidity, high strength, high hardness, high precision, and stability. Zinc die parts have good thin wall capability for mass production, and high corrosion resistance. Therefore, zinc alloy die casting is an ideal alternative to many industrial component materials. Commonly used zinc alloy grades: Zn 1#, Zn 2#, Zn 3#, Zn 5#, Zamak8#, etc. The Main Physical Characteristics Are As Below: Currently, We occupy 54,000 square feet with a workshop plant located at Huizhou City, And another plant 49,000 square foot workshop plant located at Dongguan City, China. Quantities of Major Machines: 15 sets of CNC Machining Centers 5 sets of EDM Machining 2 sets of Wire cutting 2 sets of CMM 2 sets of Projector 2 sets of Spot Machine Zinc alloy dies casting mold life depends upon the part/tool design, as well as the Tool steels used. Commonly Mold Steels Used: H-13, H-13, ESR, Assab 8407, Bohler W302, and Assab 8418. etc. Take care all projects according to mold projects management system. CAMEL has been provided zinc die casting molds from custom zinc die casting tooling to middle-sized zinc die casting parts production, meanwhile including surface treatments service based on customers’ requirements, such as Plating chrome, Plating Tarnish, UV Coating, Powder coating, Painting, Anodizing, Blacking, Impregnating, etc. We run all metal products under ISO 9001:2015 and IATF 16949:2016. Die casting machines for mold trials ranging from 280 tons to 3000 tons ( 280T, 350T, 500T, 800T, 1250T,1650T, 3000T), Our capability from tooling design to build dies about 12-15 sets of big die casting dies per month. DFM ( 2 days) Moldflow Analysis (24 Hours) Mold Design (2-3 days) Weekly Tooling Schedule Mold Trial Mold Shipment Free Quote & Part Analysis → Die Casting Molds We Build: Trimming Die High-Pressure Zinc alloy die casting mold High-Pressure Aluminum alloy die casting mold High-Pressure Magnesium alloy die casting mold contact

  • Die Casting Mold For Magnesium Alloy | cameldie.com

    CAMEL DIE provides Magnesium die casting mold manufacturing service of mold processing and ( HPDC ) high pressure die casting molds design for Magnesium and Magnesium alloys. What is HPDC - Magnesium Alloy Die Casting Molds Magnesium Alloy is the lightest commonly used structural metal. Its use in die cast parts has grown dramatically, often replacing plastic parts with greater strength and rigidity at no weight penalty. Mg alloy AZ91D is the most widely-used magnesium die casting alloy, offering high purity with excellent corrosion resistance, excellent strength, and excellent castability. Corrosion resistance in AZ91D is achieved by enforcing strict limits on metallic impurities. Magnesium’s high cost limits it to weight-sensitive applications in the aerospace and automotive industries. Commonly used magnesium die casting alloys metals grades: AZ91D, AZ31B, AZ40, AZ41, AM60B, AM50A, etc. The Main Physical Of Magnesium Alloys As Below: ●AZ91D belongs to the category of cast magnesium alloy, which has a low affinity with iron, less mold sticking, and has a longer mold life than aluminum alloy. Magnesium alloy is the lightest metal among practical metals, with high strength and high rigidity. It is mostly used in lightweight parts such as automobile instrument panel frame, wiper bracket, bicycle wheel hub, steering wheel frame, etc. Magnesium alloy die castings are mainly processed by die casting assisted by subsequent processing, and the appearance can be changed by surface methods such as electrophoresis. ●AZ31B magnesium alloy is a wrought magnesium alloy with good mechanical properties and is mainly used for automobile parts, machine parts, and communication equipment. ●AZ40 magnesium alloy product use: engine gear casing, oil pump and oil pipe, instrument panel, gearbox body, crankcase, engine front cover, cylinder head, air conditioner casing, etc. ●AZ41 magnesium alloy has high strength and hardness, electrical and thermal conductivity, good wear resistance, and wear resistance. After aging treatment, the hardness, strength, electrical conductivity, and thermal conductivity are significantly improved, and it is easy to weld. ● AM60B has high elongation and impact resistance. Steering wheels and seats on cars, etc. ●AM50A has high elongation and impact resistance. Steering wheels and seats on cars, etc. Magnesium alloy die casting die life depends upon the part/tool design, as well as the Tool steels used. Commonly mold steels are used: H-13, H-13, ESR, Assab 8407, Bohler W302, and Assab 8418. etc. CAMEL is a professional high-pressure die-casting molds (HPDC) manufacturer in China, The main products include aluminum alloy die-casting molds, zinc alloy die-casting molds, and magnesium alloy die-casting molds. From tools design & build to die casting parts pre & mass production. The main industries we support are Automotive Industry, Motorcycle Industry, Aerospace Industry, Office furniture Industry, Lock Industry, Electrical Industry, Lighting Industry, Casino Industry, Home Appliances Industry, Machinery Industry, Communications Industry, and Others. Capabilities: Currently, We occupy 54,000 square feet with a workshop plant located at Huizhou City, And another plant 49,000 square feet workshop plant located at Dongguan City, China. Quantities of Major Machines: 15 sets of CNC Machining Centers 5 sets of EDM Machining 2 sets of Wire cutting 2 sets of CMM 2 sets of Projector 2 sets of Spot Machine Take care of all projects according to the mold projects management system. DFM ( 2 days) Moldflow Analysis (24 Hours) Mold Design (2-3 days) Weekly Tooling Schedule Mold Trial Mold Shipment Die Casting Molds We Build: Trimming Die High-Pressure Zinc alloy die casting mold High-Pressure Aluminum alloy die casting mold High-Pressure Magnesium alloy die casting mold Free Quote & Part Analysis → contact

  • Technical Specifications Of Die Casting Dies | cameldie.com

    In order to smoothly process the dies manufacturing, trial mold, and normal use, the technical requirements for manufacturing, assembling, use, and other processes must be indicated on the assembly drawing and part drawing of the Die-casting dies. Technical specifications of die casting dies After the design of the Die-casting dies structure is completed, there are more important and more complex manufacturing, assembly, mold trial, and production application processes. To smoothly process the dies manufacturing, trial mold, and normal use, the technical requirements for manufacturing, assembling, use, and other processes must be indicated on the assembly drawing and part drawing of the Die-casting dies. 1. Technical requirements that should be indicated in the Die-casting dies assembly drawing 2. Technical requirements for the shape and installation position of the Die-casting dies 3. Technical requirements for overall assembly accuracy of Die-casting dies 4. Dimensional tolerance and fit of structural parts of Die-casting dies 5. Geometric tolerances and surface roughness requirements of Die-casting dies structural parts 1. Technical requirements that should be indicated in the Die-casting dies assembly drawing 1 The assembly drawing should indicate the following technical requirements (1) The maximum external dimensions of the dies(length×width×height). To facilitate the review of whether there is interference between the sliding components and the machine components when the dies are working, the size, position, and stroke of the hydraulic core-pulling cylinder, the size and position of the slider core-pulling mechanism, and the position of the slider to the endpoint sketches should be drawn. (2) Choose the Die-casting machine model. To facilitate the review of whether there is interference between the sliding components and the machine components when the dies is working, the size, position, and stroke of the hydraulic core-pulling cylinder, the size and position of the slider core-pulling mechanism and the position of the slider to the end point sketches should be drawn. (3) Choose the inner diameter, specific pressure, or nozzle diameter of the pressure chamber. (4) The minimum mold opening stroke (if the maximum mold opening stroke is limited, it should also be noted). (5) Push out the itinerary. (6) Indicate the cooling system, hydraulic system inlet, and outlet. (7) Pouring system and main dimensions. (8) Action stroke of special motion mechanism. 2. Technical requirements for the shape and installation position of the Die-casting dies 2 The shape and installation position of the Die-casting dies should meet the following technical requirements: (1) The edges of each template should be chamfered 2×45°, and the mounting surface should be smooth and flat, and there should be no protruding screw heads, pins, burrs, and scratches. (2) Mark obvious marks on the non-working surface of the dies, including the following: product code, dies number, manufacturing date, and dies manufacturer's name or code. (3) The movable and fixed molds are respectively provided with screw holes for lifting, and the larger parts (>25kg) should also be provided with lifting screw holes. The effective thread depth of the screw hole is not less than 1.5 times the diameter of the screw hole. (4) The relevant dimensions of the dies installation part should be by the relevant corresponding dimensions of the selected die-casting machine, and the installation and disassembly are convenient. The installation hole diameter and depth of the pressure chamber must be strictly inspected. (5) Except for the guide sleeve hole and the oblique pinhole on the parting surface, all process holes and screw holes in the dies manufacturing process should be blocked and flush with the parting surface. 3. Technical requirements for overall assembly accuracy of Die-casting dies 3 The overall assembly accuracy of the die-casting dies should be guaranteed to meet the following technical requirements (1) The parallelism between the dies parting surface and the installation plane of the movable and fixed dies seat plates is selected according to the provisions of the table below: The specified unit of parallelism between the dies parting surface and the installation plane of the movable and fixed dies base (unit: mm) The maximum linear length of the measured surface ≤160 160~250 250~400 400~630 630~1000 1000~1600 Tolerance value 0.06 0.08 0.1 0.12 0.16 0.2 (2) The verticality of the installation plane of the guidepost, guide sleeve, and fixed mold seat plate should be selected according to the provisions of the table below: The vertical regulation of guide post and guide sleeve to the installation plane of fixed and movable dies seat plate (unit: mm) Effective sliding length of guide post and guide sleeve ≤40 40~63 63~100 100~160 160~250 Tolerance value 0.015 0.02 0.025 0.030 0.040 (3) On the parting surface, the plane of the fixed dies and the movable dies insert should be flush with the fixed mold set plate and the movable dies set plate or slightly higher, but the height should be within the range of 0.05~0.10mm. (4) The push rod and the reset rod should be flush with the parting surface respectively. The pushrod is allowed to protrude from the profile surface, but not more than 0.1mm, and the reset rod is allowed to be lower than the profile surface, but not more than 0.05mm. The pushrod should be able to rotate flexibly in the pushrod fixed rod, but the axial clearance should not be greater than 0.10mm. (5) All movable parts of the dies should be accurate in position, reliable in movement, and free of skew and sluggishness; no movement between relatively fixed parts is allowed. (6) The sliding block is positioned accurately and reliably after the dies are opened. At the end of the core pulling action, the distance between the drawn core end face and the end face of the corresponding shape or hole on the casting shall not be less than 2mm. The sliding mechanism should be flexible in guiding and sliding, stable in movement, and proper clearance. After closing the dies, the sliding block and the wedge block should be compressed, the contact area is not less than 1/2, and has a certain prestress. (7) The surface roughness Ra of the runner should not be greater than 0.4m, the connecting part should be smoothly connected, the inserting part should be close, and the molding inclination should not be less than 5°. (8) When clamping the dies, the molding surface should fit closely. If there is a gap in some parts, the gap size should not be greater than 0.05mm (except for the exhaust groove). (9) The cooling water channel and temperature control oil channel should be unblocked, there should be no leakage, and the inlet and outlet should be clearly marked. (10) The surface roughness Ra of all forming surfaces is not greater than 0.4m, and all surfaces are not allowed to be damaged or rubbed. Injuries or micro cracks. 4. Dimensional tolerance and fit of structural parts of Die-casting dies 4 Die-casting dies work at high temperatures. Therefore, when selecting the matching tolerances of die-casting dies parts, not only a certain assembly accuracy is required at room temperature, but also the structural dimensions of each part are required to be stable and reliable in operation at working temperature. Especially the parts that are in direct contact with the molten metal are subjected to high pressure, high speed, and thermal alternating stress during the filling process, and the clearance with other parts is prone to change, which affects the normal progress of die casting. The change of the fit-gap is not only related to the temperature but also related to the material, shape, volume, heating degree of the working part of the parts of the dies, and the actual fit properties after processing and assembly. Therefore, the working conditions of die-casting dies parts are very complicated. Generally, the fit clearance should meet the following two requirements: ① For the fixed parts after assembly, there will be no position deviation under the impact of the molten metal. After being heated and expanded, the deformation cannot make the fit too tight, so that the dies inserts and the sleeve plate are locally overloaded seriously, causing the dies to crack. ② For parts that are active during work, after being heated, the nature of the clearance fit should be maintained to ensure normal movement, and during the filling process, the molten metal will not cause the fit clearance. Combined with the actual situation of die-casting dies manufacturing and use, the tolerance and matching accuracy of the main parts of the die-casting dies are now recommended as follows: (1) Tolerance of forming dimensions: The general tolerance level is specified as IT9, H for holes, h for shafts, and GB/T180F for length. Individual special sizes can be selected IT6~T8 level when necessary. (2) Tolerance and fit of matching parts for forming parts: ① The fixed parts of the larger parts that are in contact with the molten metal and are heated, mainly include the sleeve plate and the insert block, the insert block and the core, the sleeve plate and the sprue sleeve, the insert block and the shunt cone, etc. The integral type and accuracy are H7/h6 or H8/h7. The inlaid hole is H8, the largest one in the shaft is h7, and the rest of the spare parts in the shaft is js7, and the cumulative tolerance of the assembly is h7. ②The matching type and accuracy of the movable parts (including push rods, push tubes, formed push plates, sliders, slider grooves, etc.), the hole is H7, the axis is e7 Or d8. ③The height tolerance of inserts, inserts, and fixed cores is F8. ④The tolerance of the base size is taken as js8. (3) Tolerance and coordination of template size: the tolerance of the base size is taken as js8; the core is cylindrical or symmetrical, and the centerline size tolerance of the hole from the base to the fixed core on the template is taken as js8; the core is non-cylindrical Or when it is asymmetrical, the edge dimension tolerance from the base surface to the fixed core on the template is taken as js8; the thickness dimension tolerance of the combined sleeve plate is taken as h10; the depth dimension tolerance of the insert hole of the integral sleeve plate is taken as h10. (4) Dimension tolerance of sliding groove: ①The dimensional tolerance of the sliding block groove to the base surface is taken as f7. ②For the combined sleeve, the dimensional tolerance from the slider groove to the bottom surface of the sleeve is taken as js8. ③For the integral sleeve plate, the dimensional tolerance from the slider groove to the bottom surface of the insert hole is taken as js8. (5) Tolerance and fit of guide post and guide sleeve: For the fixed position of the guide post and guide sleeve, the hole is H7, and the axis is m6, r6, or k6; for the clearance fit of the guide post and guide sleeve, the hole is H7, and the axis is k6 or printed. ; If the hole is H8, the axis is e7. (6) The size between the guide post and guide sleeve and the base surface: the dimensional tolerance from the base surface to the center line of the guide post and guide sleeve is js7; the dimensional tolerance of the distance between the center line of the guide post and guide sleeve is js7, or cooperated processing. (7) The tolerance and fit between the push plate guide post and the push rod fixed plate and the push plate: the hole is H8, and the shaft is f8 or f9. (8) Tolerance of core table, push rod table, and corresponding dimensions: the depth of the hole table is +0.05~+0.10mm, and the height of the pillow block is -0.03~0.05mm. (9) The tolerance level of the unmarked tolerance dimensions of various parts is IT14 level, H for holes, h for shafts, and length (height) and distance dimensions are selected according to js14 accuracy. 5.Geometric tolerances and surface roughness requirements of Die-casting dies structural parts 5 Geometric tolerance is the deviation of the surface shape and position of the part. The deviation range of the geometric tolerance of the forming part of the formed part and the reference part of all other structural parts is generally required to be within the tolerance range of the size, and no additional mark is added on the drawing. The geometric tolerances of other surfaces of the parts of the Die-casting dies are selected according to the table below and marked on the drawing. The table below Selection accuracy grades of geometric tolerances of die casting dies parts: Geometric tolerances of relevant elements Selection accuracy Coaxial between the axis of the fixed part of the guide post and the axis of the guide sliding part Level 5~6 The coaxial of each forming step surface of the circular insert to the mounting surface Level 6 Concentricity between the inner diameter of the guide sleeve and the outer diameter axis Level 6~7 The axis of the fixed hole of the insert in the sleeve is coaxial with the common axis of the holes Level 7~8 on the other sleeves The perpendicularity between the axis of the guide post or the guide sleeve Level 5~6 mounting hole and the parting surface of the sleeve plate The two adjacent sides of the set of plates are the perpendicularity of the process reference plane Level 5~6 The perpendicularity of the two adjacent sides of the insert and the other side of the parting face Level 6~7 The perpendicularity between the surface of the insert hole in the sleeve and the parting surface Level 7~8 The perpendicularity of the axis of the core fixing hole on the insert to the parting surface Level 7~8 Parallelism of the two planes of the plate Level 5 The parallelism of the opposite sides of the insert and the bottom of the parting face Level 5 The axis of the insert hole in the sleeve and the end face of the parting surface are circularly run out Level 6~7 The radial runout of the axis of the circular insert to its end face Level 6~7 Parallelism of the parting surface of the insert, the sealing surface of the slider, the combined surface ≤0.05mm of the combined block, etc. The surface roughness of die-casting dies parts not only affects the surface quality of the die-casting part, but also affects the use, wear, and life of the dies. It should be selected according to the work needs of the part. The appropriate surface roughness is shown in the table below. Surface roughness of Die-casting dies: Surface position Surface roughness Ra/pm The forming surface of inserts, cores and other forming parts and the surface of the gating system 0.1~0.2 The mating surface of inserts, cores, sprue sleeves, shunt cones, and other parts ≤0.4 The mating surfaces of guide posts, guide sleeves, push rods, diagonal pins and other parts ≤0.8 Mold parting surface, joint surface between each template ≤0.8 Support surface of core, push rod, sprue bushing, shunt cone and other parts ≤1.6 Other non-working surfaces ≤6.3 contact

  • Zinc Alloy Die Casting Mold | cameldie.com

    Zinc alloy is the main material for zinc die casting mold. such as Zamak #3 ZINC DIE CASTING MOLDS 1/1

  • Magnesium Die Casting Tool | cameldie.com

    magnesium die casting molds show-2 MAGNESIUM DIE CASTING TOOL PRODUCT PARAMETERS Product Material: AZ91D Product Size (LxWxH): 91x91x7mm Qty Of Cavity: 4 Qty Of Slider: 0 Mold Type: 2-Plate mold Machine Tons: 600Ton Mold Size (mm): 750 x 620 x 533 Lead Time: 28 days

  • Aerospace Industry Die Casting Tool | cameldie.com

    This page shows our production control process, some examples of past work with die casting tool for Aerospace industrial customers. DIE CASTING MOLD FOR AIRCRAFT PARTS DIE CASTING MOLD TRIAL REPORT Product Material: AZ91D Product Size (LxWxH): 91x91x7mm Qty Of Cavity: 4 Qty Of Slider : 0 Mold Type : 2-Plate mold Machine Tons : 600Ton Mold Size (mm) : 750 x 620 x 533 Lead Time : 28 days READ MORE→ PROJECT DETAILS CAMEL provide DFM and Moldflow within 3 working days. Project Management 1, RFQ & Quote CAMEL provide quote within 1-2 working days. And provide DFM and mold flow if needed. 2, DFM & Moldflow 3, Mold Design & Design Review Usually 3D mold drawing for 1 set mold submit within 2-3 working days. and 3-5 sets mold drawing provide within 1 week . CAMEL do care about lead time. Design review to ensure all requirements completed and correctly before send out mold drawing . 4, Tooling Schedule & Week report CAMEL provide the first schedule within 24 hours after get customer approve for order& cut steel, and update scheudle with processing pictures on each Monday. And send project tracker with all sets molds status(Still processing) on each Thursday. 5, Trial Report & FAI Report Mold trial report will be provided within 24 hours after mold trial, there has picture showing the mold running status and sample's status in trial report, And provide trial video and parameter together. FAI report of casting sumbit within 72 hours after finish mold trial. 6, Sample approval and Mold Shipment 1) Provide X-ray inspecting report to ensure casting quality. 2) Ship casting within 24 hours after finish trial, and provide waybill in timely. 3) After samples approval and shippment informed. According to Mold checking list to ensure all requiremets completly and correctly to ship to our clients. 7, After-Service CAMEL have 3 cooperated after-service location at Europe (Austria ,Slovenia), and 5 cooperated after-service location at Unit States (MI,IN,TX). CAMEL be responsible for the mold production smoothy during mold life. contact

  • Aerospace Industry Airplant Seat | cameldie.com

    How long does it take to turn ideas into reality and drawings into real products? Generally, different industries have different production cycles. For the die casting mold industry, the processing volume is determined according to the size and structure complexity of the parts. FLOW PATH How long does it take to turn ideas into reality and drawings into real products? Generally, different industries have different production cycles. For the die casting mold industry, the processing volume is determined according to the size and structure complexity of the parts. CAMEL DIE got a set of a die-casting mold project from one of our American customers in May of 2020. This die-casting part is a metal gasket used on aircraft seats. Due to the product design updates and change in the number of cavities from 2 cavities to 4 cavities we provided the updated quotation within 24 hours with all related details such as the mold base, tool action (slider requirement), cavities, estimated casting machine size for the first trial, estimated die casting mold size(mm), estimated mold life, design confirmation timing, steel cutting to T1 (weeks), mold cost and freight cost. etc. CAMEL is committed to improving our response speed. Serving our customers and fulfilling their requirements is our standard. When our client wanted to proceed to start this project however, they needed to expedite the lead time to 5 weeks instead of the 8 weeks we had originally quoted. Had this requirement not been met, we would have stood to lose the order. After strong communication with our team of experts and the detailed evaluation of this project, we determined that it could be completed in advance within the required time. To support long-term cooperation with our customer, we proceeded with the designing in advance before we got the order. This saved us one week of lead time, and we were thus able to adjust the processing schedule accordingly. With our strong motivation to go above and beyond our customer’s expectations to build quality molds we thrive on being flexible with lead time without cutting any corners. After we confirmed the completion of the required changes with our customer the order was promptly confirmed. Upon receiving the order confirmation, we immediately began to prepare for the die casting mold design and submitted the product analysis report in one working day. In the DFM report, all details were confirmed with our client, such as the parting line, injection pin, visible areas, inserts, split lines, ejection location, engraving & cavity, radii, machining & allowance, complete information of the die-casting machine, clamping slot, etc., as well as some suggestions about the parts. The mold flow analysis report was provided within 3 working days and the 3D mold drawing in 2 working days. Our teamwork cooperation and communication were smooth and efficient and because of that the design confirmation was completed in one week. During the mold building process, we strictly followed our project management system in order to ensure quality control. If there were any pending questions that required confirmation with our clients our team ensured that a prompt reply was provided with our suggestive solutions so that everything remained on schedule. Because of our teams’ strong work ethic and attention to detail the entire project went very smoothly and in fact we were able to finish the project one week in advance which our client was incredibly pleased with. During the mold building process, we made sure to keep our client up to date on every step and detail to ensure we were all on the same page. An example of this is that we submitted the tooling schedule and weekly report status with pictures of the mold process. After we finished the mold build and completed the T1 trial, we provided our client with the trial report with detailed photos of the mold and parts. We also provided the die casting machine parameter data. The FAI report was provided in 3 working days to ensure all measurements were in the correct tolerance . After inspection by our engineers, we confirmed that there were no issues with the samples and sent 5-10pcs to our customer for assembly inspection. The whole project went exceptionally smooth. As normal it took 7 days by express freight for our client to receive the samples. After inspection and measurement confirmation our client provided feedback to CAMEL If there were any updated suggestions. With detailed review and confirmation our client approved these samples after 2 weeks then informed us to arrange the mold shipment. We promptly proceeded with inspecting all mold components, assembling the mold, and running one more trial before shipment. CAMEL has more than 12 years of experience in the mold industry, and in order to support our customers well, we have also developed multiple after-sale partnerships in the customer's area, which can provide mold landing services and follow-up parts replacement services, as well as technical support if needed. Our aim is to make a good mold - stable like a CAMEL! READ MORE→

  • HPDC vs LPDC Die Casting | cameldie.com

    On this page, you will learn about the differences between HPDC and LPDC, and their functions HPDC vs LPDC Die Casting High-pressure die casting(HPDC) High-pressure casting is a process in which molten metal is poured into a pressure chamber so that the molten metal fills the mold cavity at high speed and then solidifies under high pressure to form a casting. The flow speed during filling can reach 30-80mm/s, and the time for filling the cavity is extremely short. Advantages and disadvantage of HPDC It has the advantages of good surface finish, stable dimensions, and direct molding of thin-walled structures. It is mainly used for the manufacture of shells and other castings, Its work efficiency is high, and it will also provide a smoother surface for finishing. The surface finish depends on the finish of the mold. This high-quality surface can be directly applied to other paints. However, the disadvantage is that it generates high operating and investment costs. In high-pressure production, thicker parts may be difficult to cast. Porosity may also occur in high-pressure die-casting parts, which generally cannot be heat-treated and have high operating costs. Feature and application of HPDC High-speed, high-pressure, and metal casting are the main characteristics of pressure casting production. Thin-walled castings with complex shapes can be cast, and fine grains, holes, teeth, grooves, etc. can be directly cast. The dimensional accuracy and surface quality of the castings are relatively high. High, realizing less cutting or no cutting. Due to the high production efficiency of this die-casting machine and the high metal utilization rate, the application in the die-casting production of zinc, aluminum, and magnesium alloys has a growing trend. The strength and surface bending hardness of the casting are higher, and the tensile strength is 25%~30% higher than that of sand casting. However, due to the fast filling speed of liquid metal, the gas in the cavity is difficult to discharge, and it is often filled with gas under the surface Therefore, under normal circumstances, die castings cannot be heat treated or mechanically processed to avoid porosity on the surface of the casting. HPDC mainly used for the mass production of non-ferrous metals such as aluminum, magnesium, zinc, copper, etc., and it is widely used in industries such as automobiles, meters, electronics, aerospace, lighting, furniture, mechanical, hardware, and communication, etc. In recent years, new technologies such as vacuum die casting, new processes, as well as new equipment such as double-punch die-casting machines, horizontal parting full-vertical die casting machines, etc., have continued to emerge. Although the quality of castings has been greatly improved to effectively control casting defects, there are still have pores, shrinkage holes, and shrinkage porosity. At the same time, due to the continuous emergence of new die-casting materials, the scope of application of die casting will continue to expand. Free Quote & Part Analysis → Low-pressure die casting(LPDC) LPDC is to make the liquid alloy fill the cavity from bottom to top under lower pressure, and crystallize under pressure to cast the casting part. Therefore, compared with high-pressure casting, the pressure is different and the direction of liquid metal flow is different, and it can be heat treated. Advantages and disadvantage of LPDC Due to the stable filling of LPDC and the same direction of liquid flow and airflow, the castings produced by casting have fewer defects such as porosity and slag inclusion; the structure is dense and the mechanical properties of the castings are high; the filling ability is strong, which is conducive to the formation of clear and clear contours. Castings with smooth surface, so important aluminum alloy castings will be low-pressure casting. Although LPDC has a dense structure and better mechanical properties, its productivity is low. After HPDC, the surface quality is better, but there are inevitably some pores inside, and its productivity is high, so it is more suitable for thin-walled castings, but the castings are shrinkage and loose, not dense, and are not used for castings with high airtightness requirements. Feature and application of LPDC LPDC is used when selecting castings with high air-tightness requirements. The production batch is large, and small and medium-sized non-ferrous metal castings without tightness requirements are HPDC. The difference is that LPDC parts can be strengthened by heat treatment, and the toughness can be greatly improved. Therefore, the design depends on the product wall thickness and the weight of the entire product. If the wall thickness is thicker and the product weight is heavier, the LPDC process should be selected. Otherwise, if the wall thickness is lighter, the HPDC process should be selected. The feature of LPDC as below: LPDC can use sand, metal, graphite, etc., and has the following advantages: Filling with pure molten metal improves the purity of castings. The molten metal fills smoothly, thereby reducing the formation of oxide slag. The casting has good moldability. The molten metal is filled under pressure, which can improve the fluidity of the molten metal, which is beneficial to the formation of castings with clear contours and smooth surfaces, and is more beneficial for the molding of large thin-walled castings. The casting is solidified under pressure, and the structure of the casting is dense. Convenient production and operation, good working conditions, high production efficiency, and easy realization of mechanization and automation. contact

  • What is Die Casting Mold | Mold Design and Production | cameldie.com

    On this page, you will understand the meaning of die casting mold, the manufacturing process of the die casting mold, the difference between HPDC and LPDC, what elements will affect the stability, the description of each part, and the common types of alloys. What is Die Casting Mold? Die Casting Mold Definition Die casting mold is composed of two parts, which are separated according to the draft angle of the product. The molten metal is injected from the stationary end, and the die casting part is solidified by cooling. The die casting part will stay on the moving side, and the moving side will pass through the thimble Eject the die casting, spray lubricant on the mold after the die casting is taken out. If you want to learn about the glossary of die casting mold, please see here. In the early stage of the mold, it is necessary to confirm the mold flow analysis and product analysis report, and start simple mold design until the product drawing is approved by the customer; analyze the die-casting material, shape, structure, and size of the product parts from the perspective of die casting processing performance accuracy. High-pressure Die Casting(HPDC) HPDC is poured metal material in the molten state into the pressure chamber of the die casting machine, filled in the cavity of the die casting mold at a very high speed under the moving of high pressure, and the molten alloy material is cooled and solidified under high pressure to cast the high-efficiency precision casting method. Also die casting mold is a tool for casting metal parts, a tool for completing the die casting process on a dedicated die-casting machine. Need to use a cold chamber die casting machine or a hot chamber die casting machine. The usual pressure for die casting is from several MPa to several tens of MPa, and the initial filling speed is in the range of (0.5~70) m/s. Therefore, high pressure and high speed are important features of die casting. The Process Analysis Of General Parts Drawing Should Pay Attention To The Following Points: The material meets the customer's performance requirements Dimensional accuracy Easy to fill Wall thickness, wall connections, ribs, and fillets Parting, die direction and draft angle Slide block and mold core cross, undercut, etc Ejection direction, push rod position Patterns, text, and symbols Other special quality requirements Design Manual Of Die Casting Mold: Biscuit must ensure sufficient fluidity Consider the existing processing range of machinery and equipment CNC, mold saving, EDM processing convenience Emission of gas in the mold Try to consider the post-processing technology Pay attention to the strength of the mold base and insert mold, Design necessary mold temperature device to facilitate performance adjustment during production The balance of the mold when lifting, easy to transport Die Casting Mold Is The Key Process Tool For Casting Production Whether production can proceed smoothly and the quality of castings can be guaranteed depending on the reasonable mold structure. And the design of the die casting mold is essentially a comprehensive reflection of various factors that may appear in the production process. So it is necessary to analyze the casting structure in the design process, be familiar with the operation process, understand the possibility of the implementation of the process parameters, master the filling conditions in different situations, and consider the impact on the economic effect. Reasonable, practical, and able to meet the production requirements of die casting tools. The Important Factor Of Die Casting Mold In The Production Process Determine the accurate shape and casting part size Determine gate system and the filling condition of the molten metal Determine overflow system affects the filling conditions of molten metal The strength of the mold limited the maximum injection pressure Control and adjust the heat balance of the die-casting process The quality of castings when they are taken out The mold casting surface not only affects the quality of the casting and affects the coating spraying Die Casting Mold Manufacturing Process CNC, heat treatment, internal stress removal, deep hole drilling, EDM, slow wire walking, grinding machine processing, drilling machine processing, electrode processing, mold matching, lathe, mold saving, nitriding, coating. Die Casting Mold Base Runner and overflow Die Casting Dies Structure, More Details : 1. Molding System The casting shape is molding after the die casting cavity and the moving core are closed. The molding system includes core, cavity, sliders, inserts, and inserts pins. 2. Mold Base System The mold base included various steel plates, frames, and other structural parts. The function is to combine and fix the various parts of the mold and enable the mold to be installed on the die casting machine. 3. Ejection System Ejector function to eject the casting parts from the mold, including ejection and returned parts, and the guiding parts. Used same material as forming parts to make the ejector pins and easily damaged parts. 4. Runner System It is connected with the molding part and the pressure chamber to guide the metal material into cavities in a certain direction. It directly affects the speed and pressure of the molten metal molding part. It is composed of a sprue, a runner, an inner gate, etc. 5. Overflow System The overflow system is a channel to remove the air from the pressure chamber. and generally includes venting slots and overflow slots. Sometimes, In order to improve the venting conditions, installed vent plugs in deep cavities. 6. Other There are other components such as bolts and pins for fastening and positioning parts for positioning in the mold. Free Quote & Part Analysis → General Steel Materials For Die Casting Molds: The selection of die casting molds mainly depends on the temperature and type of the cast metal. How to choose suitable mold steel to increase the mold life of die casting molds, especially high melting point metals. 1. Aluminum alloy die casting mold The temperature of the aluminum alloy melt is usually around 1202~1292℉. The mold life of aluminum alloy die casting molds should be focused on whether mold sticking and early dry cracking of the mold cavity occur. At present, General used aluminum alloy die casting mold steels included: 4Cr5MoSiV1 (H13), 4Cr5MoSiV (H11), 3Cr2W8V, and new steel grades Y10 and HM3. 2. Zinc alloy die casting mold The melting point of zinc alloy is 752~806℉, and the surface temperature of the zinc alloy die-casting mold cavity will not exceed 400°C. The materials generally used to manufacture zinc alloy die-casting molds are alloy structural steels 40Cr, 30CrMnSi, 40CrMo, etc., alloy mold steels 5CrNiMo, 5CrMnMo, 4Cr5MoSiV, 4Cr5MoSiV1, 3Cr2W8V, CrWMn, etc. 3. Magnesium alloy die casting mold The melting point of magnesium alloy is 1202℉. Die-casting has a good molding feature. The tensile strength of magnesium alloy castings is equivalent to that of aluminum alloy castings, generally up to 250Mpa, up to more than 600Mpa. The most commonly used is H13 steel or materials with similar properties. After machining, the cavity part is quenched and annealed to make the hardness within the range of 46-48HRC. Only the cavity part and special parts of the mold need to use H13 steel, and these parts generally account for 20-30% of the weight of the entire mold. The other parts of the mold are made of low-carbon steel and medium-carbon steel. For smaller die cast parts with relatively simple geometric switches, molds of standardized modules are often used. Compared with aluminum alloy, magnesium alloy has lower hot melt, and its iron content is also very low. Therefore, the mold has a longer life. How To Maintain A Die Casting Mold During The Non-working Period After the tool is running for a period of time and before storage, check the important dimensions and the mold components may damage that need to be repaired or replaced. After confirming all tool components are no damaged, they must be cleaned up completely. Check whether there is residual material in the cavity, whether the material runner is clean, and whether the parting surface of the mold, top block, and sliding block working surface are strained. The surface of the cavity should be carefully inspected. If there is rust or water rust, it should be polished again. After the cavity is cleaned, to prevent rust, apply anti-rust oil. Before the mold is placed in the storage place, remove the residual cooling water in the mold and the residual oil in the oil pipe, and then use the locking plate to fix the moving plate and the fixed mold to prevent it open. Mold storage is required to be in a flat, dry, clean place that is convenient for lifting and handling. The storage should be classified, and similar molds should be placed together. contact us

bottom of page